Skip to main content
Log in

Matrix stiffness induces epithelial mesenchymal transition phenotypes of human epidermal keratinocytes on collagen coated two dimensional cell culture

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Keratinocytes are epithelial cells in epidermis tightly connected to each other by cell-cell junction. During the process of wound re-epithelization, these epithelial cells undergo significant phenotypic changes that are reminiscent of the EMT process occurring during development and tumor progression. As the wound healing progresses, the reepithelization is initiated by activation and migration of keratinocytes from the edges of the wound. As they migrate toward the wound center, keratinocytes set off from their laminin-rich niche, and are forced to experience the abrupt changes in ECM microenvironment consisting of fibronectin and collagen matrices with locally elevated stiffness along the interface of the blood clot and the granulation tissue layer. In this study, thus, we tried to elucidate the effect of alteration of ECM proteins and substrate stiffness in keratinocytes during wound re-epithelization.

Methods

We expose primary normal human epidermal keratinocytes (NHEK) to the culture microenvironment, rich in fibronectin or collagen with varying stiffness, to investigate the role of the physiochemical stimuli on induction of EMTlike changes in NHEKs.

Results

Our results show that a stiffer substrate coated with either fibronectin or collagen induces faster migration with elevated expressions of mesenchymal genes (vimentin, MMP1), and proteins (vimentin, FAK) while suppressing those of the epithelial origin (CK10, CK14, Fillagrin, and Ecadherin) when compared to the laminin coated surfaces.

Conclusions

Various physicochemical stimuli inherently present at the wounds must orchestrate to induce the EMT process in NHEKs, promoting the re-epithelization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol. 2010; 176(5):2247–58.

    Article  Google Scholar 

  2. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008; 68(4):989–97.

    Article  Google Scholar 

  3. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell. 2009; 139(5):871–90.

    Article  Google Scholar 

  4. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009; 9(4):239–52.

    Article  Google Scholar 

  5. Cicchini C, Laudadio I, Citarella F, Corazzari M, Steindler C, Conigliaro A, Fantoni A, Amicone L, Tripodi M. TGFbetainduced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res. 2008; 314(1):143–52.

    Article  Google Scholar 

  6. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol. 2001; 159(3):1009–20.

    Article  Google Scholar 

  7. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007; 127(3):526–37.

    Article  Google Scholar 

  8. O’Toole EA. Extracellular matrix and keratinocyte migration. Clin Exp Dermatol. 2001; 26(6):525–30.

    Article  Google Scholar 

  9. Woodley DT, Okeefe EJ, Prunieras M. Cutaneous woundhealing - a model for cell-matrix interactions. J Am Acad Dermatol. 1985; 12(2 Pt2):420–33.

    Article  Google Scholar 

  10. Woodley DT, Bachmann PM, Okeefe EJ. Laminin inhibits human keratinocyte migration. J Cell Physiol. 1988; 136(1): 140–6.

    Article  Google Scholar 

  11. O’Toole EA, Marinkovich MP, Hoeffler WK, Furthmayr H, Woodley DT. Laminin-5 inhibits human keratinocyte migration. Exp Cell Res. 1997; 233(2):330–9.

    Article  Google Scholar 

  12. Clark RA, Lanigan JM, Dellapelle P, Manseau E, Dvorak HF, Colvin RB. Fibronectin and fibrin provide a provisional matrix for epidermal-cell migration during wound reepithelialization. J Invest Dermatol. 1982; 79(5):264–269.

    Article  Google Scholar 

  13. Markowski MC, Brown AC, Barker TH. Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues. J Biomed Mater Res A. 2012; 100(8):2119–27.

    Article  Google Scholar 

  14. Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys. 2008; 30(5):599–606.

    Article  Google Scholar 

  15. Hendriks FM, Brokken D, van Eemeren JT, Oomens CW, Baaijens FP, Horsten JB. A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res Technol. 2003; 9(3):274–83.

    Article  Google Scholar 

  16. Diridollou S, Vabre V, Berson M, Vaillant L, Black D, Lagarde JM, Gregoire JM, Gall Y, Patat F. Skin ageing: changes of physical properties of human skin in vivo. Int J Cosmet Sci. 2001; 23(6):353–62.

    Article  Google Scholar 

  17. Usui ML, Underwood RA, Mansbridge JN, Muffley LA, Carter WG, Olerud JE. Morphological evidence for the role of suprabasal keratinocytes in wound reepithelialization. Wound Repair Regen. 2005; 13(5):468–79.

    Article  Google Scholar 

  18. Purkis PE, Steel JB, Mackenzie IC, Nathrath WB, Leigh IM, Lane EB. Antibody markers of basal cells in complex epithelia. J Cell Sci. 1990; 97(Pt 1):39–50.

    Google Scholar 

  19. Ivaska J. Vimentin: central hub in EMT induction? Small GTPases. 2011; 2(1):51–3.

    Article  Google Scholar 

  20. Stevens LJ, Page-McCaw A. A secreted MMP is required for reepithelialization during wound healing. Mol Biol Cell. 2012; 23(6):1068–79.

    Article  Google Scholar 

  21. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 2005; 6(1):56–68.

    Article  Google Scholar 

  22. Schaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 2010; 123(Pt 7):1007–13.

    Article  Google Scholar 

  23. Turner CE. Paxillin and focal adhesion signalling. Nat Cell Biol. 2000; 2(12):E231–6.

    Article  Google Scholar 

  24. Schaller MD. Paxillin: a focal adhesion-associated adaptor protein. Oncogene. 2001; 20(44):6459–72.

    Article  Google Scholar 

  25. Kim JH, Serra-Picamal X, Tambe DT, Zhou EH, Park CY, Sadati M, Park JA, Krishnan R, Gweon B, Millet E, Butler JP, Trepat X, Fredberg JJ. Propulsion and navigation within the advancing monolayer sheet. Nat Mater. 2013; 12(9):856–63.

    Article  Google Scholar 

  26. Boyer B. The Ras and Src signaling cascades involved in epithelial cell scattering. In: Savagner P, editor. Rise and fall of epithelial phenotype: concepts of epithelial-mesenchymal transition (molecular biology intelligence unit). New York: Springer; 2005. pp. 245–54.

    Chapter  Google Scholar 

  27. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126(4):677–89.

    Article  Google Scholar 

  28. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310(5751): 1139–43.

    Article  Google Scholar 

  29. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility Cytoskeleton. 2005; 60(1):24–34.

    Article  Google Scholar 

  30. Elosegui-Artola A, Bazellieres E, Allen MD, Andreu I, Oria R, Sunyer R, Gomm JJ, Marshall JF, Jones JL, Trepat X, Roca-Cusachs P. Rigidity sensing and adaptation through regulation of integrin types. Nat Mater. 2014; 13(6):631–7.

    Article  Google Scholar 

  31. Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP. Rigidity sensing at the leading edge through alpha(v)beta(3) integrins and RPTP alpha. Biophys J. 2006; 90(5):1804–9.

    Article  Google Scholar 

  32. Moore SW, Roca-Cusachs P, Sheetz MP. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell. 2010; 19(2):194–206.

    Article  Google Scholar 

  33. Niu G, Chen X. Why integrin as a primary target for imaging and therapy. Theranostics. 2011; 1:30–47.

    Article  Google Scholar 

  34. Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci. 2006; 119(Pt 19):3901–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer H. Shin.

Additional information

Two authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Gweon, B., Koh, U. et al. Matrix stiffness induces epithelial mesenchymal transition phenotypes of human epidermal keratinocytes on collagen coated two dimensional cell culture. Biomed. Eng. Lett. 5, 194–202 (2015). https://doi.org/10.1007/s13534-015-0202-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-015-0202-2

Keywords

Navigation