Skip to main content
Log in

MEMS-based microelectrode technologies capable of penetrating neural tissues

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Due to the high spatial selectivity and resolution with high accessibility to single neurons, penetrating neural electrodes have been used for neuronal recording or stimulation in specific applications although they are invasive, thus inducing more inflammatory response and damages to the tissue, compared to non-penetrating electrodes. Penetrating electrodes are mainly made up of stiff materials such as metal wires, silicon, or glass. Compared to microwire electrodes, siliconbased penetrating electrodes are fabricated in precise designs and dimensions, often in forms of array with higher number of independent channels. Although precise 2-D and 3-D electrode structures are used in many applications, efforts to make them more biocompatible and long-lasting have been reported recently. On the other hand, soft materials such as polymers have also been lately used in penetrating electrodes to accommodate their flexibility and mechanical properties that are more favorable to neural tissues, minimizing adverse effects on tissues. Polymer-based electrodes are promising for future applications where better biocompatibility is required although technical hurdles in using them in long term have to be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005; 8(9):1263–8.

    Article  Google Scholar 

  2. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature. 2007; 446(7136):633–9.

    Article  Google Scholar 

  3. Deisseroth K. Optogenetics. Nat Methods. 2011; 8(1):26–9.

    Article  Google Scholar 

  4. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV. An optogenetic toolbox designed for primates. Nat Neurosci. 2011; 14(3):387–97.

    Article  Google Scholar 

  5. Bai Q, Wise KD. Single-unit neural recording with active microelectrode arrays. IEEE T Biomed Eng. 2001; 48(8):911–20.

    Article  Google Scholar 

  6. Kipke DR, Vetter RJ, Williams JC, Hetke JF. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE T Neural Syst Rehabil Eng. 2003; 11(2):151–5.

    Article  Google Scholar 

  7. Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992; 20(4):423–37.

    Article  Google Scholar 

  8. Branner A, Stein RB, Normann RA. Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol. 2001; 85(4):1585–94.

    Google Scholar 

  9. Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003; 31(7):879–90.

    Article  Google Scholar 

  10. Yao Y, Gulari MN, Hetke JF, Wise KD. A low-profile threedimensional neural stimulating array with on-chip current generation. Conf Proc IEEE Eng Med Bio Soc. 2004; 1:1994–7.

    Google Scholar 

  11. Kipke DR, Shain W, Buzsaki G, Fetz E, Henderson JM, Hetke JF, Schalk G. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci. 2008; 28(46):11830–8.

    Article  Google Scholar 

  12. Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005; 148(1):1–18.

    Article  Google Scholar 

  13. Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W. Brain responses to micro-machined silicon devices. Brain Res. 2003; 983(1–2):23–35.

    Article  Google Scholar 

  14. Hassler C, Boretius T, Stieglitz T. Polymers for neural implants. J Polym Sci Pol Phys. 2011; 49(1):18–33.

    Article  Google Scholar 

  15. Hsu JM, Rieth L, Normann RA, Tathireddy P, Solzbacher F. Encapsulation of an integrated neural interface device with parylene C. IEEE T Biomed Eng. 2009; 56(1):23–9.

    Article  Google Scholar 

  16. Hasseler C, von Metzen RP, Ruther P, Stieglitz T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J Biomed Mater Res B Appl Biomater. 2010; 93(1):266–74.

    Google Scholar 

  17. Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009; 6(3):0360–3.

    Article  Google Scholar 

  18. Min KS, Lee CJ, Jun SB, Kim J, Lee SE, Shin J, Chang JW, Kim SJ. A Liquid crystal polymer-based neuromodulation system: An application on animal model of neuropathic pain. Neuromodulation. 2014; 17(2):160–9.

    Article  Google Scholar 

  19. Schendel AA, Thongpang S, Brodnick SK, Richner TJ, Lindevig BD, Krugner-Higby L, Williams JC. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices. J Neurosci Methods. 2013; 218(1):121–30.

    Article  Google Scholar 

  20. Chou N, Yoo S, Kim S. A largely deformable surface type neural electrode array based on PDMS. IEEE T Neural Syst Rehabil Eng. 2013; 21(4):544–53.

    Article  Google Scholar 

  21. Rodger DC, Fong AJ, Li W, Ameri H, Ahuja AK, Gutierrez C, Lavrov I, Zhong H, Menon PR, Meng E, Burdick JW, Roy RR, Edgerton VR, Weiland JD, Humayun MS, Tai YC. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B Chem. 2008; 132(2):449–60.

    Article  Google Scholar 

  22. Rodriguez FJ, Ceballos D, Schuettler M, Valero A, Valderrama E, Stieglitz T, Navarro X. Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods. 2000; 98(2):105–18.

    Article  Google Scholar 

  23. Zariffa J, Nagai MK, Daskalakis ZJ, Popovic MR. Influence of the number and location of recording contacts on the selectivity of a nerve cuff electrode. IEEE T Neural Syst Rehabil Eng. 2009; 17(5):420–27.

    Article  Google Scholar 

  24. Guo L, Guvanasen GS, Liu X, Tuthill C, Nichols TR, Deweerth SP. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE T Biomed Circuits Syst. 2012; 7(1):1–10.

    Article  MATH  Google Scholar 

  25. Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioacive capability. IEEE T Biomed Eng. 2001; 48(3):361–71.

    Article  Google Scholar 

  26. Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S. High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res. 2001; 41(10–11):1261–75.

    Article  Google Scholar 

  27. Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Res. 1999; 39(15):2577–87.

    Article  Google Scholar 

  28. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442(7099):164–71.

    Article  Google Scholar 

  29. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485(7398):372–5.

    Article  Google Scholar 

  30. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008; 453(7198):1098–101.

    Article  Google Scholar 

  31. Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV. A highperformance brain-computer interface. Nature. 2006; 442(7099): 195–8.

    Article  Google Scholar 

  32. Strumwasser F. Long-term recording from single neurons in brain of unrestrained mammals. Science. 1958; 127(3296):469–70.

    Article  Google Scholar 

  33. Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LM. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron. 1997; 18(4):529–37.

    Article  Google Scholar 

  34. Nicolelis MAL, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA. 2003; 100(19):11041–6.

    Article  Google Scholar 

  35. Williams JC, Rennaker RL, Kipke DR. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res Brain Res Protoc. 1999; 4(3):303–13.

    Article  Google Scholar 

  36. McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system for multiple unit records. J Neurosci Methods. 1983; 8(4):391–7.

    Article  Google Scholar 

  37. Yuen TG, Agnew WF. Histological evaluation of polyesterimideinsulated gold wires in brain. Biomaterials. 1995; 16(12):951–6.

    Article  Google Scholar 

  38. Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TGH, Agnew WF. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE T Rehabil Eng. 1999; 7(3):315–26.

    Article  Google Scholar 

  39. Buzsáki G. Large-scale recording of neuronal ensembles. Nature Neurosci. 2004; 7(5):446–51.

    Article  Google Scholar 

  40. Wise KD, Angell JB, Starr A. An Integrated-Circuit Approach to Extracellular Microelectrodes. IEEE T. Biomed Eng. 1970; 17(3):238–47.

    Article  Google Scholar 

  41. Najafi K, Wise KD, Mochizuki T. A high-yield IC-compatible multichannel recording array. IEEE T Electron Devices. 1985; 32(7):1206–11.

    Article  Google Scholar 

  42. Najafi K, Wise KD. An implantable multielectrode array with on-chip signal processing. IEEE J Solid-State Circuits. 1986; 21(6):1035–44.

    Article  Google Scholar 

  43. BeMent SL, Wise KD, Anderson DJ, Najafi K, Drake KL. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE T Biomed Eng. 1986; 33(2):230–41.

    Article  Google Scholar 

  44. Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetke JF, Xue X, Zappia JJ, Wise KD. Batch fabricated thin-film electrodes for stimulation of the central auditory system. IEEE T Biomed Eng. 1989; 36(7):693–704.

    Article  Google Scholar 

  45. Najafi K, Hetke JF. Strength characterization of silicon microprobes in neurophysiological tissues. IEEE T Biomed Eng. 1990; 37(5):474–81.

    Article  Google Scholar 

  46. Tanghe SJ, Wise KD. A 16-channel CMOS neural stimulating array. IEEE J Solid-State Circuits. 1992; 27(12):1819–25.

    Article  Google Scholar 

  47. Kim C, Wise KD. A 64-site multishank CMOS low-profile neural stimulating probe. IEEE J Solid-State Circuits. 1996; 31(9):1230–8.

    Article  Google Scholar 

  48. Yoon TH, Hwang EJ, Shin DY, Park SI, Oh SJ, Jung SC, Shin HC, Kim SJ. A micromachined silicon depth probe for multichannel neural recording. IEEE T Biomed Eng. 2000; 47(8):1082–7

    Article  Google Scholar 

  49. Oh SJ, Song JK, Kim SJ. Neural interface with a silicon neural probe in the advancement of microtechnology. Biotechnol Bioprocess Eng. 2003; 8(4):252–6

    Article  Google Scholar 

  50. Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE T Biomed Eng. 1991; 38(8):758–68.

    Article  Google Scholar 

  51. Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992; 20(4):423–37.

    Article  Google Scholar 

  52. Negi S, Bhandari R, Rieth L, Solzbacher F. Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films. Sens Actuators B Chem. 2009; 137(1):370–8.

    Article  Google Scholar 

  53. Negi S, Bhandari R, Rieth L, Van Wagenen R, Solzbacher F. Neural electrode degradation from continuous electrical stimulation: Comparison of sputtered and activated iridium oxide. J Neurosci Methods. 2010; 186(1):8–17.

    Article  Google Scholar 

  54. Bhandari R, Negi S, Rieth L, Normann RA, Solzbacher F. A novel masking method for high aspect ratio penetrating microelectrode arrays. J Micromech Microeng. 2009; doi:10.1088/0960-1317/19/3/035004.

    Google Scholar 

  55. Yoo JM, Song JI, Tathireddy P, Solzbacher F, Rieth LW. Hybrid laser and reactive ion etching of Parylene-C for deinsulation of a Utah electrode array. J Micromech Microeng. 2012; doi:10.1088/0960-1317/22/10/105036.

    Google Scholar 

  56. Branner A, Stein RB, Normann RA. Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol. 2001; 85(4):1585–94.

    Google Scholar 

  57. Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE T Biomed Eng. 2004; 51(1):146–57.

    Article  Google Scholar 

  58. Wark HAC, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B, Tresco P, Rieth L, Solzbacher F, Normann RA, Tathireddy P. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng. 2013; 10(4):0450–3.

    Article  Google Scholar 

  59. Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F. Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices. 2008; 11(2):453–66.

    Article  Google Scholar 

  60. Sharma A, Rieth L, Tathireddy P, Harrison R, Oppermann H, Klein M, Töpper M, Jung E, Normann R, Clark G, Solzbacher F. Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA): Implications for long term functionality. Sens Actuators A Phys. 2012; 188:167–72.

    Article  Google Scholar 

  61. Bai Q, Wise KD, Anderson DJ. A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng. 2000; 47(3):281–9.

    Article  Google Scholar 

  62. Yao Y, Gulari MN, Wiler JA, Wise KD. A Microassembled Low-Profile Three-dimensional microelectrode array for neural prosthesis applications. J Microelectromech Syst. 2007; 16(4):977–88.

    Article  Google Scholar 

  63. Perlin GE, Wise KD. An ultra compact integrated front end for wireless neural recording microsystems. J Microelectromechanical Syst. 2010; 19(6):1409–21.

    Article  Google Scholar 

  64. Merriam ME, Dehmel S, Srivannavit O, Shore SE, Wise KD. A 3-D 160-site microelectrode array for cochlear nucleus mapping. IEEE Trans Biomed Eng. 2011; 58(2):397–403.

    Article  Google Scholar 

  65. Aarts AAA, Srivannavit O, Wise KD, Yoon E, Puers R, Van Hoof C, Neves HP. Fabrication technique of a compressible biocompatible interconnect using a thin film transfer process. J Micromech Microeng. 2011; 21:doi:10.1088/0960-1317/21/7/074012.

  66. Bhandari R, Negi S, Rieth L, Normann RA, Solzbacher F. A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens Actuators A Phys. 2008; 145–146(1–2):123–30.

    Article  Google Scholar 

  67. Rakwal D, Heamawatanachai S, Tathireddy P, Solzbacher F, Bamberg E. Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsyst Technol. 2009; 15(5):789–97.

    Article  Google Scholar 

  68. Sharma R, Tathireddy P, Lee S, Rieth L, Bamberg E, Dorval A, Normann RA, Solzbacher F. Application-specific customizable architectures of Utah neural interfaces. Procedia Eng. 2011; 25:1016–9.

    Article  Google Scholar 

  69. Byun D, Cho SJ, Kim S. Fabrication of a flexible penetrating microelectrode array for use on curved surfaces of neural tissues. J Micromech Microeng. 2013; 23:doi:10.1088/0960-1317/23/12/125010.

  70. Kim DH, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang KC, Zakin MR, Litt B, Rogers JA. Dissolvable films of silk fibroin for ultrathin conformal biointegrated electronics. Nat Mater. 2010; 9(6):511–7.

    Article  Google Scholar 

  71. Lacour SP, Benmerah S, Tarte E, Fitzgerald J, Serra J, McMahon S, Fawcett J, Graudejus O, Yu Z, Morrison B 3rd. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput. 2010; 48(10):945–54.

    Article  Google Scholar 

  72. Rousche PJ, Pellinen DS, Pivin Jr. DP, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001; 48(3):361–70.

    Article  Google Scholar 

  73. Mercanzini A, Cheung K, Buhl DL, Boers M, Maillard A, Colin P, Bensadoun JC, Bertsch A, Renaud P. Demonstration of cortical recording using novel flexible polymer neural probes. Sens Actuators A Phys. 2008; 143(1):90–6.

    Article  Google Scholar 

  74. Tooker A, Tolosa V, Shah KG, Sheth H, Felix S, Delima T, Pannu S. Polymer neural interface with dual-sided electrodes for neural stimulation and recording. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012:5999–6002. doi: 10.1109/EMBC.2012.6347361.

    Google Scholar 

  75. Kim BJ, Kuo JTW, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E. 3D Parylene sheath neural probe for chronic recordings. J Neural Eng. 2013; 10(4):0450–2.

    Google Scholar 

  76. Wu F, Tien L, Chen F, Kaplan D, Berke J, Yoon E. A multishank silk-backed parylene neural probe for reliable chronic recording. Conf Proc Transducer Eurosens. 2013; doi:10.1109/Transducers.2013.6626910.

    Google Scholar 

  77. Lee SE, Jun SB, Lee HJ, Kim Jd, Lee SW, Im C, Shin HC, Chang JW, Kim SJ. A flexible depth probe using liquid crystal polymer. IEEE T Biomed Eng. 2012; 59(7):2058–94.

    Google Scholar 

  78. Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G, Magee JC. Multi-array silicon probes with integrated optical fibers: Light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci. 2010; 31(12):2279–91.

    Article  Google Scholar 

  79. Im M, Cho IJ, Wu F, Wise KD, Yoon E. Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites. Conf Proc IEEE Micro Electro Mech Syst. 2011; doi:10.1109/MEMSYS.2011.5734609.

    Google Scholar 

  80. Wang J, Wagner F, Borton DA, Zhang J, Ozden I, Burwell RD, Nurmikko AV, Van Wagenen R, Diester I, Deisseroth K. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng. 2012; 9(1):0160–1.

    Article  Google Scholar 

  81. Kim TI, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, Song J, Song YM, Pao HA, Kim R-H, Lu C, Lee SD, Song IS, Shin G, Al-Hasani R, Kim S, Tan MP, Huang Y, Omenetto FG, Rogers JA, Bruchas MR. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 2013; 340(6129):211–6

    Article  Google Scholar 

  82. Metz S, Holzer R, Renaud P. Polyimide-based microfluidic devices. Lab Chip. 2001; 1(1):29–34.

    Article  Google Scholar 

  83. Metz S, Jiguet S, Bertsch A, Renaud P. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip. 2004; 4(2):114–20.

    Article  Google Scholar 

  84. Ziegler D, Suzuki T, Takeuchi S. Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene. J Microelectromech Syst. 2006; 15(6):1477–82.

    Article  Google Scholar 

  85. Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip. 2005; 5(5):519–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, N., Byun, D. & Kim, S. MEMS-based microelectrode technologies capable of penetrating neural tissues. Biomed. Eng. Lett. 4, 109–119 (2014). https://doi.org/10.1007/s13534-014-0133-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-014-0133-3

Keywords

Navigation