Graphene bioelectronics


Graphene, a single-atomic-thick planar sheet of sp2-bonded carbon atoms, has been widely investigated for its potential applications in many areas, including biological interfaces, due to its superb electromechanical, optical and chemical properties. In particular, its mechanical flexibility and biocompatibility allow graphene to be configured and utilized as ultra-compliant interfaces for implantable bioelectronics. Furthermore, the superior carrier mobility and transconductance level of graphene field-effect devices lend themselves as high performance/high sensitivity field-effect signal transducers, whose source-drain current is modulated by external field or charge perturbation from chemical and/or biological events. In this article, we review recent developments in graphenebased bioelectronics, focusing on both materials synthesis/fabrication as well as cellular interfaces, and discuss challenges and opportunities for ultra-compliant, highly sensitive, three-dimensional (3D) bioelectronic interfaces in the future.

This is a preview of subscription content, access via your institution.


  1. [1]

    Geim AK. Graphene: status and prospects. Science. 2009; 324(5934):1530–1534.

    Article  Google Scholar 

  2. [2]

    Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007; 6(3):183–191.

    Article  Google Scholar 

  3. [3]

    Ang PK, Chen W, Wee ATS, Loh KP. Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc. 2008; 130(44):14392–14393.

    Article  Google Scholar 

  4. [4]

    Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010; 10(3):1098–1102.

    Article  Google Scholar 

  5. [5]

    Dong X, Shi Y, Huang W, Chen P, Li L-J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater. 2010; 22(14):1649–1653.

    Article  Google Scholar 

  6. [6]

    Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008; 8(12):4469–4476.

    Article  Google Scholar 

  7. [7]

    Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K. Electrolytegated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 2009; 9(9):3318–3322.

    Article  Google Scholar 

  8. [8]

    Park J-U, Nam S, Lee M-S, Lieber CM. Synthesis of monolithic graphene-graphite integrated electronics. Nat Mater. 2012; 11(2):120–125.

    Article  Google Scholar 

  9. [9]

    Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008; 321(5887):385–388.

    Article  Google Scholar 

  10. [10]

    Edwards RS, Coleman KS. Graphene film growth on polycrystalline metals. Accounts Chem Res. 2013; 46(1):23–30.

    Article  Google Scholar 

  11. [11]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science. 2009; 324(5932):1312–1314.

    Article  Google Scholar 

  12. [12]

    Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010; 5(8):574–578.

    Article  Google Scholar 

  13. [13]

    Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y-W, Kim P, Hone J, Colombo L, Ruoff RS. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science. 2013; 342(6159):720–723.

    Article  Google Scholar 

  14. [14]

    Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009; 9(12):4268–4272.

    Article  Google Scholar 

  15. [15]

    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010; 10(3):751–758.

    Article  Google Scholar 

  16. [16]

    Nam S, Chun S, Choi J. All-carbon graphene bioelectronics. Conf IEEE Eng Med Biol Soc. 2013; 5654–5657.

    Google Scholar 

  17. [17]

    Ang PK, Jaiswal M, Lim CHYX, Wang Y, Sankaran J, Li A, Lim CT, Wohland T, Barbaros O, Loh KP. A bioelectronic platform using a graphene-lipid bilayer interface. ACS Nano. 2010; 4(12):7387–7394.

    Article  Google Scholar 

  18. [18]

    Sankaran J, Manna M, Guo L, Kraut R, Wohland T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy. Biophys J. 2009; 97(9):2630–2639.

    Article  Google Scholar 

  19. [19]

    Kannan B, Guo L, Sudhaharan T, Ahmed S, Maruyama I, Wohland T. Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem. 2007; 79(12):4463–4470.

    Article  Google Scholar 

  20. [20]

    Huang Y, Dong X, Liu Y, Li L-J, Chen P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem. 2011; 21(33):12358–12362.

    Article  Google Scholar 

  21. [21]

    Ang PK, Li A, Jaiswal M, Wang Y, Hou HW, Thong JTL, Lim CT, Loh KP. Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett. 2011; 11(12):5240–5246.

    Article  Google Scholar 

  22. [22]

    Aikawa M, Kamanura K, Shiraishi S, Matsumoto Y, Arwati H, Torii M, Ito Y, Takeuchi T, Tandler B. Membrane knobs of unfixed plasmodium falciparum infected erythrocytes: new findings as revealed by atomic force microscopy and surface potential spectroscopy. Exp Parasitol. 1996; 84(3):339–343.

    Article  Google Scholar 

  23. [23]

    Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martínez F, Castillo-León J. Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst. 2013; 138(4):1026–1031.

    Article  Google Scholar 

  24. [24]

    Daly R, Kumar S, Lukacs G, Lee K, Weidlich A, Hegner M, Duesberg GS. Cell proliferation tracking using graphene sensor arrays. J Sens. 2012; doi:10.1155/2012/219485.

    Google Scholar 

  25. [25]

    Wu YH, Yu T, Shen ZX. Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J Appl Phys. 2010; 108(7):071301.

    Article  Google Scholar 

  26. [26]

    Romero HE, Shen N, Joshi P, Gutierrez HR, Tadigadapa SA, Sofo JO, Eklund PC. n-Type behavior of graphene supported on Si/SiO(2) substrates. ACS Nano. 2008; 2(10):2037–2044.

    Article  Google Scholar 

  27. [27]

    He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano. 2010; 4(6):3201–3208.

    Article  Google Scholar 

  28. [28]

    Nguyen P, Berry V. Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett. 2012; 3(8):1024–1029.

    Article  Google Scholar 

  29. [29]

    Sudibya HG, Ma J, Dong X, Ng S, Li L-J, Liu X-W, Chen P. Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew Chem Int Edit. 2009; 48(15):2723–2726.

    Article  Google Scholar 

  30. [30]

    Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhäusser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater. 2011; 23(43):5045–5049.

    Article  Google Scholar 

  31. [31]

    An JH, Park SJ, Kwon OS, Bae J, Jang J. High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano. 2013; 7(12):10563–10571.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to SungWoo Nam.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, J., Wang, M.C., Cha, R.Y.S. et al. Graphene bioelectronics. Biomed. Eng. Lett. 3, 201–208 (2013).

Download citation


  • Graphene
  • Cell
  • Flexibility
  • Implantable
  • Field-Effect Transistor
  • Bioelectronics