Skip to main content
Log in

Microwell fabrication methods and applications for cellular studies

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Traditional cell culture methods allow bulk biomolecular assays; however, individual cell responses are blended, lost, and ignored. To overcome such limitations of the traditional cell culture methods and to provide more in vivo-like microenvironments, a microwell array system has been used in the last few decades as a very attractive tool for analyzing individual cells. The basic cell trapping mechanism of a microwell system is simple; cells drop into the microwell by gravity. However, there are demands for advanced microwell systems that are capable of performing more active functions. Innovations in substrate materials and cell trapping/handling mechanisms used for microwell systems are meeting such needs. This paper presents an overview of various microwell fabrication techniques, cell trapping mechanisms, and biological applications. Future innovations in microwell systems, which will be useful for cell biology, tissue engineering, and biomedical engineering, are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goyal G, Nam Y. Neuronal micro-culture engineering by microchannel devices of cellular scale dimensions. Biomed Eng Lett. 2011; 1:89–98.

    Article  Google Scholar 

  2. Kim E-S, Kim S, Choi KY, Han K-H. Micro-/nanotechnologybased isolation and clinical significance of circulating tumor cells. Biomed Eng Lett. 2012; 2:78–87.

    Article  Google Scholar 

  3. Ng J, Shin Y, Chung S. Microfluidic platforms for the study of cancer metastasis. Biomed Eng Lett. 2012; 2:72–77.

    Article  Google Scholar 

  4. Park J, Kim KB, Lee J, Kim HC, Huh D. Organomimetic microsystems technologies. Biomed Eng Lett. 2012; 2:88–94.

    Article  Google Scholar 

  5. Figueroa XA, Cooksey GA, Votaw SV, Horowitz LF, Folch A. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip. 2010; 10:1120–1127.

    Article  Google Scholar 

  6. Di Carlo D, Lee LP. Dynamic single-cell analysis for quantitative biology. Anal Chem. 2006; 78:7918–7925.

    Article  Google Scholar 

  7. Charnley M, Textor M, Khademhosseini A, Lutolf MP. Integration column: microwell arrays for mammalian cell culture. Integr Biol. 2009; 1:625–634.

    Article  Google Scholar 

  8. Kim SM, Lee SH, Suh KY. Cell research with physically modified microfluidic channels: a review. Lab Chip. 2008; 8:1015–1023.

    Article  Google Scholar 

  9. Rettig JR, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem. 2005; 77:5628–5634.

    Article  Google Scholar 

  10. Lee WC, Rigante S, Pisano AP, Kuypers FA. Large-scale arrays of picolitre chambers for single-cell analysis of large cell populations. Lab Chip. 2010; 10:2952–2958.

    Article  Google Scholar 

  11. Ozawa T, Kinoshita K, Kadowaki S, Tajiri K, Kondo S, Honda R, Ikemoto M, Piao L, Morisato A, Fukurotani K, Kishi H, Muraguchi A. Mac-Ccd system: a novel lymphocyte microwell-array chip system equipped with Ccd scanner to generate human monoclonal antibodies against influenza virus. Lab Chip. 2009; 9:158–163.

    Article  Google Scholar 

  12. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials. 1999; 20:2363–2376.

    Article  Google Scholar 

  13. Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006; 27:3044–3063.

    Article  Google Scholar 

  14. Liberski AR, Delaney JT, Schubert US. One cell-one well: a new approach to inkjet printing single cell microarrays. Acs Comb Sci. 2011; 13:190–195.

    Article  Google Scholar 

  15. Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A. Apoptotic cell death dynamics of Hl60 cells studied using a microfluidic cell trap device. Lab Chip. 2005; 5:49–55.

    Article  Google Scholar 

  16. Di Carlo D, Wu LY, Lee LP. Dynamic single cell culture array. Lab Chip. 2006; 6:1445–1449.

    Article  Google Scholar 

  17. Hosokawa M, Arakaki A, Takahashi M, Mori T, Takeyama H, Matsunaga T. High-density microcavity array for cell detection: single-cell analysis of hematopoietic stem cells in peripheral blood mononuclear cells. Anal Chem. 2009; 81:5308–5313.

    Article  Google Scholar 

  18. Schiffenbauer YS, Kalma Y, Trubniykov E, Gal-Garber O, Weisz L, Halamish A, Sister M, Berke G. A cell chip for sequential imaging of individual non-adherent live cells reveals transients and oscillations. Lab Chip. 2009; 9:2965–2972.

    Article  Google Scholar 

  19. Liu W, Dechev N, Foulds IG, Burke R, Parameswaran A, Park EJ. A novel permalloy based magnetic single cell micro array. Lab Chip. 2009; 9:2381–2390.

    Article  Google Scholar 

  20. Taff BM, Voldman J. A scalable addressable positivedielectrophoretic cell-sorting array. Anal Chem. 2005; 77:7976–7983.

    Article  Google Scholar 

  21. Gray DS, Tan JL, Voldman J, Chen CS. Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron. 2004; 19:1765–1774.

    Article  Google Scholar 

  22. Grier DG. A revolution in optical manipulation. Nature. 2003; 424:810–816.

    Article  Google Scholar 

  23. Shi J, Ahmed D, Mao X, Lin SC, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip. 2009; 9:2890–2895.

    Article  Google Scholar 

  24. Xia YN, Whitesides GM. Soft lithography. Angew Chem Int Edit. 1998; 37:551–575.

    Google Scholar 

  25. Weibel DB, DiLuzio WR, Whitesides GM. Microfabrication meets microbiology. Nat Rev Microbiol. 2007; 5:209–218.

    Article  Google Scholar 

  26. Lee S-A, No DY, Kang E, Ju J, Kim D-S, Lee S-H. Spheroidbased three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip. 2013; 13:3529–3537.

    Article  Google Scholar 

  27. Wang YL, Phillips CN, Herrera GS, Sims CE, Yeh JJ, Allbritton NL. Array of biodegradable microrafts for isolation and implantation of living, adherent cells. Rsc Adv. 2013; 3:9264–9272.

    Article  Google Scholar 

  28. Balowski JJ, Wang Y, Allbritton NL. Fabrication of 3d microstructures from interactions of immiscible liquids with a structured surface. Adv Mater. 2013; 25:4107–4112.

    Article  Google Scholar 

  29. Giang UBT, Lee D, King MR, DeLouise LA. Microfabrication of cavities in polydimethylsiloxane using drie silicon molds. Lab Chip. 2007; 7:1660–1662.

    Article  Google Scholar 

  30. Lee DH, Park JY, Lee EJ, Choi YY, Kwon GH, Kim BM, Lee SH. Fabrication of three-dimensional microarray structures by controlling the thickness and elasticity of poly (dimethylsiloxane) membrane. Biomed Microdevices. 2010; 12:49–54.

    Article  Google Scholar 

  31. Choi YY, Chung BG, Lee DH, Khademhosseini A, Kim JH, Lee SH. Controlled-Size embryoid body formation in concave microwell arrays. Biomaterials. 2010; 31:4296–4303.

    Article  Google Scholar 

  32. Hwang JW, Lee BR, Jung MJ, Jung HS, Hwang YH, Kim MJ, Lee SH, Lee DY. Functional clustering of pancreatic islet cells using concave microwell array. Macromol Res. 2011; 19:1320–1326.

    Article  Google Scholar 

  33. Park JY, Hwang CM, Lee SH. Ice-lithographic fabrication of concave microwells and a microfluidic network. Biomed Microdevices. 2009; 11:129–133.

    Article  Google Scholar 

  34. Lee BK, Hwang CJ. Kim DS, Kwon TH. Replication quality of flow-through microfilters in microfluidic lab-on-a-chip for blood typing by microinjection molding. Manuf Sci Eng. 2008; 130: 20:0210101-1-8.

    Google Scholar 

  35. Kwak D, Lim JA, Kang B, Lee WH, Cho K. Self-organization of inkjet-printed organic semiconductor films prepared in inkjetetched microwells. Adv Funct Mater. 2013; doi:10.1002/adfm.201300936.

    Google Scholar 

  36. Dobes NC, Dhopeshwarkar R, Henley WH, Ramsey JM, Sims CE, Allbritton NL. Laser-based directed release of array elements for efficient collection into targeted microwells. Analyst. 2013; 138:831–838.

    Article  Google Scholar 

  37. Gottwald E, Giselbrecht S, Augspurger C, Lahni B, Dambrowsky N, Truckenmüller R, Piotter V, Gietzelt T, Wendt O, Pfleging W, Welle A, Rolletschek A, Wobus AM, Weibezahn KF. A chipbased platform for the in vitro generation of tissues in threedimensional organization. Lab Chip. 2007; 7:777–785.

    Article  Google Scholar 

  38. Nam HJ, Jung D-Y, Park Y-K, Park S. Gold nanostructures on chemically reinforced pdms microwell arrays. Appl Surface Sci. 2010; 256:2066–2072.

    Article  Google Scholar 

  39. Sugimura S, Akai T, Somfai T, Hirayama M, Aikawa Y, Ohtake M, Hattori H, Kobayashi S, Hashiyada Y, Konishi K, Imai K. Time-lapse cinematography-compatible polystyrenebased microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod. 2010; 83:970–978.

    Article  Google Scholar 

  40. Nguyen D, Sa S, Pegan JD, Rich B, Xiang G, McCloskey KE, Manilay JO, Khine M. Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies. Lab Chip. 2009; 9:3338–3344.

    Article  Google Scholar 

  41. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999; 20:573–588.

    Article  Google Scholar 

  42. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310:1139–1143.

    Article  Google Scholar 

  43. Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Edit. 2009; 48:5406–5415.

    Article  Google Scholar 

  44. Wang L, Murthy SK, Fowle WH, Barabino GA, Carrier RL. Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype. Biomaterials. 2009; 30:6825–6834.

    Article  Google Scholar 

  45. Kim SH, Yamamoto T, Fourmy D, Fujii T. Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small. 2011; 7:3239–3247.

    Article  Google Scholar 

  46. Gel M, Kimura Y, Kurosawa O, Oana H, Kotera H, Washizu M. Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array. Biomicrofluidics. 2010; doi:10.1063/1.3422544.

    Google Scholar 

  47. Şen M, Ino K, Ramón-Azcón J, Shiku H, Matsue T. Cell pairing using dielectrophoresis-based device with interdigitated array electrodes. Lab Chip. 2013; 13:3650–3652.

    Article  Google Scholar 

  48. Di Carlo D, Aghdam N, Lee LP. Single-cell enzyme concentrations, kinetics, and inhibition analysis using highdensity hydrodynamic cell isolation arrays. Anal Chem. 2006; 78:4925–4930.

    Article  Google Scholar 

  49. Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J. Microfluidic control of cell pairing and fusion. Nat Methods. 2009; 6:147–152.

    Article  Google Scholar 

  50. Park JY, Morgan M, Sachs AN, Samorezov J, Teller R, Shen Y, Pienta KJ, Takayama S. Single cell trapping in larger microwells capable of supporting cell spreading and proliferation. Microfluid Nanofluid. 2010; 8:263–268.

    Article  Google Scholar 

  51. Wang Y, Shah P, Phillips C, Sims CE, Allbritton NL. Trapping cells on a stretchable microwell array for single-cell analysis. Anal Bioanal Chem. 2012; 402:1065–1072.

    Article  Google Scholar 

  52. Wood DK, Weingeist DM, Bhatia SN, Engelward BP. Single cell trapping and dna damage analysis using microwell arrays. Natl Acad Sci USA. 2010; 107:10008–10013.

    Article  Google Scholar 

  53. Lindström S, Hammond M, Brismar H, Andersson-Svahn H, Ahmadian A. PCR amplification and genetic analysis in a microwell cell culturing chip. Lab Chip. 2009; 9:3465–3471.

    Article  Google Scholar 

  54. Karp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh KY, Cheng J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip. 2007; 7:786–794.

    Article  Google Scholar 

  55. Hwang JW, Kim MJ, Kim HJ, Hwang YH, Yoon S, Zahid MA, Jung HS, Lee SH, Lee DY. Optimization of pancreatic islet spheroid using various concave patterned-films. Macromol Res. 2012; 20:1264–1270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Yull Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH., Lee, G.H. & Park, J.Y. Microwell fabrication methods and applications for cellular studies. Biomed. Eng. Lett. 3, 131–137 (2013). https://doi.org/10.1007/s13534-013-0105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0105-z

Keywords

Navigation