Skip to main content
Log in

In vitro toxicity of polyethylene terephthalate nanoplastics (PET-NPs) in human hepatocarcinoma (HepG2) cell line

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Nanoplastics (NPs) are consider as emerging persistent environmental pollutants. Widespread distribution of these nanoparticles is a global problem. However, their toxic effects in mammalian tissues and cells remain mainly unknown. This study aims to investigate the cytotoxicity of PET nanoplastics (PET-NPs) in the human hepatocarcinoma (HepG2) cell line.

Methods

Toxic effects after 72h of exposure to different concentrations of PET-NPs (10–500 µg/mL) were evaluated by morphological alterations, cell internalization, cell viability (MTT), lactate dehydrogenase (LDH) release assays, induction of oxidative stress (total antioxidant capacity, TAC), and genotoxicity (comet assay).

Results

Cell viability reduced at all treatment concentrations in a dose–response manner, and 616.7 µg/mL was determined as IC50. No cell membrane damages detected by LDH assay. TAC reduced significantly after 12 h exposure to > 400 μg/mL PET-NPs. Dose-dependent DNA damages were observed after 72 h.

Conclusion

These findings indicated that PET-NPs have significant cytotoxic effects, particularly on genotoxicity and induction of oxidative stress. The results obtained here showed a significant impact of PET-NPs at the tested concentrations suggest a potential impact on humans. Other studies are currently underway to confirm these toxic effects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schirinzi GF et al (2017) Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 159:579–587

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez-Hernández AG et al (2019) A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environ Sci Nano 6(7):2031–2036

    Article  Google Scholar 

  3. Banerjee A, Billey LO, Shelver WL (2021) Uptake and toxicity of polystyrene micro/nanoplastics in gastric cells: effects of particle size and surface functionalization. PLoS ONE 16(12):e0260803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lehner R et al (2019) Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol 53(4):1748–1765

    Article  CAS  PubMed  Google Scholar 

  5. Hwang J et al (2019) An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ 684:657–669

    Article  CAS  PubMed  Google Scholar 

  6. Rummel CD et al (2019) Effects of leachates from UV-weathered microplastic in cell-based bioassays. Environ Sci Technol 53(15):9214–9223

    Article  CAS  PubMed  Google Scholar 

  7. Ali I et al (2021) Micro-and nanoplastics in the environment: occurrence, detection, characterization and toxicity–A critical review. J Clean Prod 313:127863

    Article  CAS  Google Scholar 

  8. Lai H, Liu X, Qu MJN (2022) Nanoplastics and human health: hazard identification and biointerface. Nanomaterials 12(8):1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodrigues ACB et al (2022) Scientific evidence about the risks of micro and nanoplastics (MNPLs) to human health and their exposure routes through the environment. Toxics 10(6):308

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ivleva NPJCR (2021) Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem Rev 121(19):11886–11936

    Article  CAS  PubMed  Google Scholar 

  11. Triebskorn R et al (2019) Relevance of nano-and microplastics for freshwater ecosystems: a critical review. TrAC, Trends Anal Chem 110:375–392

    Article  CAS  Google Scholar 

  12. Gonçalves JM, Bebianno MJJEP (2021) Nanoplastics impact on marine biota: A review. Environ Pollut 273:116426

    Article  PubMed  Google Scholar 

  13. Wang Q et al (2020) Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells. Chemosphere 254:126788

    Article  CAS  PubMed  Google Scholar 

  14. Revel M, Châtel A, Mouneyrac C (2018) Micro (nano) plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23

    Article  Google Scholar 

  15. Hesler M et al (2019) Multi-endpoint toxicological assessment of polystyrene nano-and microparticles in different biological models in vitro. Toxicol In Vitro 61:104610

    Article  CAS  PubMed  Google Scholar 

  16. Laforsch C et al (2020) Microplastics: a novel suite of environmental contaminants but present for decades. Regulatory Toxicology, pp 1–26.

  17. Ji Y et al (2020) Realistic polyethylene terephthalate nanoplastics and the size-and surface coating-dependent toxicological impacts on zebrafish embryos. Environ Sci Nano 7(8):2313–2324

    Article  CAS  Google Scholar 

  18. Lim SL et al (2019) Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 13(8):1117–1132

    Article  CAS  PubMed  Google Scholar 

  19. Koelmans AA, Besseling E and Shim WJ (2015) Nanoplastics in the aquatic environment. Critical review. Marine anthropogenic litter, pp 325–340.

  20. Urban RM et al (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. JBJS 82(4):457

    Article  CAS  Google Scholar 

  21. Al-Sid-Cheikh M et al (2018) Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environ Sci Technol 52(24):14480–14486

    Article  CAS  PubMed  Google Scholar 

  22. Shen M et al (2019) Recent advances in toxicological research of nanoplastics in the environment: A review. Environ Pollut 252(Pt A):511–521

    Article  CAS  PubMed  Google Scholar 

  23. Yee MS-L et al (2021) Impact of microplastics and nanoplastics on human health. Nanomaterials 11(2):496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu M et al (2019) Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ 694:133794

    Article  CAS  PubMed  Google Scholar 

  25. Villacorta A et al (2022) A new source of representative secondary PET nanoplastics Obtention characterization and hazard evaluation. J Hazardous Mater 439:129593

    Article  CAS  Google Scholar 

  26. Roursgaard M et al (2022) Genotoxicity of particles from grinded plastic items in Caco-2 and HepG2 cells. Front Public Health 10:906430

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aguilar-Guzmán JC et al (2022) Polyethylene terephthalate nanoparticles effect on RAW 264.7 macrophage cells. Microplastics Nanoplastics 2(1):1–15

    Article  Google Scholar 

  28. Zhang H et al (2022) Pulmonary toxicology assessment of polyethylene terephthalate nanoplastic particles in vitro. Environ Int 162:107177

    Article  CAS  PubMed  Google Scholar 

  29. Webb H et al (2012) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5(1):1–18

    Article  Google Scholar 

  30. Ji Y et al (2020) Realistic polyethylene terephthalate nanoplastics and the size- and surface coating-dependent toxicological impacts on zebrafish embryos. Environ Sci Nano 7(8):2313–2324

    Article  CAS  Google Scholar 

  31. Dhaka V et al (2022) Occurrence, toxicity and remediation of polyethylene terephthalate plastics A review. Environ Chem Lett 20:1777–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Materić D et al (2020) Micro-and nanoplastics in alpine snow: a new method for chemical identification and (semi) quantification in the nanogram range. Environ Sci Technol 54(4):2353–2359

    Article  PubMed  PubMed Central  Google Scholar 

  33. Materić D, Holzinger R, Niemann H (2022) Nanoplastics and ultrafine microplastic in the Dutch Wadden Sea-The hidden plastics debris? Sci Total Environ 846:157371

    Article  PubMed  Google Scholar 

  34. Zhang J, Wang L, Kannan KJEI (2020) Microplastics in house dust from 12 countries and associated human exposure. Environ Int 134:105314

    Article  CAS  PubMed  Google Scholar 

  35. Leslie HA et al (2022) Discovery and quantification of plastic particle pollution in human blood. Environ Int 163:107199

    Article  CAS  PubMed  Google Scholar 

  36. Paul MB et al (2020) Micro- and nanoplastics – current state of knowledge with the focus on oral uptake and toxicity. Nanoscale Adv 2(10):4350–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cortés C et al (2020) Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ Sci Nano 7(1):272–285

    Article  Google Scholar 

  38. Yong CQY, Valiyaveetill S, Tang BL (2020) Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health 17(05):1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang X et al (2019) Potential health impact of environmental micro- and nanoplastics pollution. J Appl Toxicol 40(1):4–15

    Article  PubMed  Google Scholar 

  40. Stock V et al (2020) An inverse cell culture model for floating plastic particles. Anal Biochem 591:113545

    Article  CAS  PubMed  Google Scholar 

  41. Forte M et al (2016) Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro 31:126–136

    Article  CAS  PubMed  Google Scholar 

  42. Elje E et al (2019) The comet assay applied to HepG2 liver spheroids. Mutation Res/Genetic Toxicol Environ Mutagenesis 845:403033

    Article  CAS  Google Scholar 

  43. Choi JM et al (2015) HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch Pharmacal Res 38:691–704

    Article  CAS  Google Scholar 

  44. Kang S-J et al (2016) Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2. Cell Biol Toxicol 32:403–417

    Article  CAS  PubMed  Google Scholar 

  45. Magrì D et al (2018) Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment. ACS Nano 12(8):7690–7700

    Article  PubMed  Google Scholar 

  46. Lionetto F et al (2021) Production and characterization of polyethylene terephthalate nanoparticles. Polymers 13(21):3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hartmann, N.B., et al. (2019) Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology, ACS Publications.

  48. Johnson LM et al (2021) Fabrication of polyethylene terephthalate (PET) nanoparticles with fluorescent tracers for studies in mammalian cells. Nanoscale Adv 3(2):339–346

    Article  CAS  PubMed  Google Scholar 

  49. Prata JC et al (2019) A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Sci Total Environ 690:1277–1283

    Article  CAS  PubMed  Google Scholar 

  50. Brandts I et al (2020) Polystyrene nanoplastics accumulate in ZFL cell lysosomes and in zebrafish larvae after acute exposure, inducing a synergistic immune response in vitro without affecting larval survival in vivo. Environ Sci Nano 7(8):2410–2422

    Article  CAS  Google Scholar 

  51. Stock V et al (2022) Microplastics and nanoplastics: size, surface and dispersant–What causes the effect? Toxicol In Vitro 80:105314

    Article  CAS  PubMed  Google Scholar 

  52. Wu B et al (2019) Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221:333–341

    Article  CAS  PubMed  Google Scholar 

  53. Liu L et al (2021) Cellular internalization and release of polystyrene microplastics and nanoplastics. Sci Total Environ 779:146523

    Article  CAS  PubMed  Google Scholar 

  54. Jeon S et al (2018) Surface charge-dependent cellular uptake of polystyrene nanoparticles. Nanomaterials 8(12):1028

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vega-Herrera A et al (2023) Exposure to micro (nano) plastics polymers in water stored in single-use plastic bottles. Chemosphere 343:140106

    Article  CAS  PubMed  Google Scholar 

  56. Crowley LC et al (2016) Dead cert: measuring cell death. Cold Spring Harb Protoc 2016(12):top070318

    Article  Google Scholar 

  57. Amini-Sarteshnizi N et al (2014) Morphological changes of apoptosis and cytotoxic effects induced by Caffeic acid phenethyl ester in AGS human gastric cancer cell line. J HerbMed Pharmacol 3(2):77–82

    Google Scholar 

  58. He Y et al (2020) Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. Sci Total Environ 723:138180

    Article  CAS  PubMed  Google Scholar 

  59. Ban M, Shimoda R, Chen J (2021) Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxicol In Vitro 76:105225

    Article  CAS  PubMed  Google Scholar 

  60. Gies V, Zou S (2018) Systematic toxicity investigation of graphene oxide: evaluation of assay selection, cell type, exposure period and flake size. Toxicol Res 7(1):93–101

    Article  CAS  Google Scholar 

  61. Rubio L et al (2020) Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines. J Hazard Mater 398:122900

    Article  CAS  PubMed  Google Scholar 

  62. Lu Y-Y et al (2022) Size-dependent effects of polystyrene nanoplastics on autophagy response in human umbilical vein endothelial cells. J Hazard Mater 421:126770

    Article  CAS  PubMed  Google Scholar 

  63. Tolardo V et al (2022) In vitro high-throughput toxicological assessment of nanoplastics. Nanomaterials 12(12):1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Busch M et al (2022) Assessing the NLRP3 inflammasome activating potential of a large panel of micro-and nanoplastics in THP-1 cells. Biomolecules 12(8):1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang S et al (2021) In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicol Environ Saf 226:112837

    Article  CAS  PubMed  Google Scholar 

  66. Demirci Çekiç S et al (2013) Correlation of total antioxidant capacity with reactive oxygen species (ROS) consumption measured by oxidative conversion. J Agric Food Chem 61(22):5260–5270

    Article  Google Scholar 

  67. Cordelli E, Bignami M, Pacchierotti F (2021) Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res 10(1):68–78

    Article  Google Scholar 

  68. Zheng T, Yuan D, Liu C (2019) Molecular toxicity of nanoplastics involving in oxidative stress and desoxyribonucleic acid damage. J Mol Recognit 32(11):e2804

    Article  CAS  PubMed  Google Scholar 

  69. Taheri S et al (2023) Investigating the pollution of bottled water by the microplastics (MPs): the effects of mechanical stress, sunlight exposure, and freezing on MPs release. Environ Monit Assess 195(1):1–13

    Article  Google Scholar 

  70. Maes T et al (2017) A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep 7(1):1–10

    Article  Google Scholar 

  71. Demeule B, Gurny R, Arvinte T (2007) Detection and characterization of protein aggregates by fluorescence microscopy. Int J Pharm 329(1–2):37–45

    Article  CAS  PubMed  Google Scholar 

  72. Ressel L (2017) Normal cell morphology in canine and feline cytology: an identification guide. Wiley, New York

    Book  Google Scholar 

  73. Peluso I, Raguzzini A (2016) Salivary and urinary total antioxidant capacity as biomarkers of oxidative stress in humans. Pathol Res Int 2016:5480267

    Article  Google Scholar 

  74. Singh NP et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  75. Mansouri N et al (2020) Genotoxicity and phytotoxicity comparison of cigarette butt with cigarette ash. Environ Sci Pollut Res 27(32):40383–40391

    Article  CAS  Google Scholar 

  76. Sharifan A et al (2021) Investigating the effects of bark extract and volatile oil of Pinus eldarica against cisplatin-induced genotoxicity on HUVECs cell line. Toxicology Res 10(2):223–231

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Vice Chancellery for Research of the Isfahan University of Medical Sciences, Isfahan, Iran. This research was supported by a grant from the Isfahan University of Medical Sciences (Grant No. 3400540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Ebrahimpour.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

The proposal of the present study was reviewed and approved by the ethics committee of Isfahan university of medical sciences (Code: IR.MUI.RESEARCH.REC.1400.057).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoochehri, Z., Etebari, M., Pannetier, P. et al. In vitro toxicity of polyethylene terephthalate nanoplastics (PET-NPs) in human hepatocarcinoma (HepG2) cell line. Toxicol. Environ. Health Sci. (2024). https://doi.org/10.1007/s13530-024-00213-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13530-024-00213-z

Keywords

Navigation