Skip to main content
Log in

Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here, human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes, and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay, the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay, phenotypic changes in mitochondrial membrane potential, calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes, albumin/urea secretion, and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition, the cell viability of SC-iHeps and p-Heps was increased by ketoconazole, a CYP3A4 inhibitor. Collectively, SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore, SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. 2008;26:1117–27.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar R, Chen Y, Luo S, Hartman C, Reed M, Nijhout HF. The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model. Theor Biol Med Model. 2012;9:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blauwkamp TA, Nigam S, Ardehali R, Weissman IL, Nusse R. Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun. 2012;3:1070.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai J, Zhao Y, Liu Y, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229–39.

    Article  CAS  PubMed  Google Scholar 

  • Commandeur JN, Stijntjes GJ, Vermeulen NP. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev. 1995;47:271–330.

    CAS  PubMed  Google Scholar 

  • Croy RG, Essigmann JM, Reinhold VN, Wogan GN. Identification of the principal aflatoxin B1-DNA adduct formed in vivo in rat liver. Proc Natl Acad Sci U S A. 1978;75:1745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A. 1984;81:1327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essigmann JM, Croy RG, Nadzan AM, et al. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc Natl Acad Sci U S A. 1977;74:1870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87:1315–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 2002;67:322–8.

    Article  CAS  PubMed  Google Scholar 

  • Gurtoo HL, Dahms R, Vaught JB. Metabolism of a prototype mycotoxin, aflatoxin B1, and its genetic regulation. Mycopathologia. 1978;65:13–28.

    Article  CAS  PubMed  Google Scholar 

  • Hay DC. Rapid and scalable human stem cell differentiation: now in 3D. Stem Cells Dev. 2013;22:2691–2.

    Article  PubMed  Google Scholar 

  • Hay DC, Fletcher J, Payne C, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A. 2008a;105:12301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay DC, Zhao D, Fletcher J, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008b;26:894–902.

    Article  CAS  PubMed  Google Scholar 

  • Hertzog PJ, Smith JR, Garner RC. Characterisation of the imidazole ring-opened forms of trans-8,9-dihydro-8,9-dihydro-8-(7-guanyl)9-hydroxy aflatoxin B1. Carcinogenesis. 1982;3:723–5.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Shi W, Zhang J, et al. Genomic indicators in the blood predict drug-induced liver injury. Pharmacogenomics J. 2010;10:267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci. 1999;20:342–9.

    Article  CAS  PubMed  Google Scholar 

  • Jakoby WB, Ziegler DM. The enzymes of detoxication. J Biol Chem. 1990;265:20715–8.

    CAS  PubMed  Google Scholar 

  • Jetten MJ, Kleinjans JC, Claessen SM, Chesne C, van Delft JH. Baseline and genotoxic compound induced gene expression profiles in HepG2 and HepaRG compared to primary human hepatocytes. Toxicol In Vitro. 2013;27:2031–40.

    Article  CAS  PubMed  Google Scholar 

  • Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973;187:195–202.

    CAS  PubMed  Google Scholar 

  • Kajiwara M, Aoi T, Okita K, et al. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109:12538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Park Y, Kwon M, et al. Adipose stromal cells are a more efficient source than adipose stem cells in reterovirus-mediated iPS induction. Cell Mol Bioeng. 2015;8(1):224–35.

    Article  Google Scholar 

  • Lee WM. Acetaminophen-related acute liver failure in the United States. Hepatol Res. 2008;38 Suppl 1:S3–8.

    Article  CAS  PubMed  Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1998;1366:177–96.

    Article  CAS  PubMed  Google Scholar 

  • Liguori MJ, Anderson MG, Bukofzer S, et al. Microarray analysis in human hepatocytes suggests a mechanism for hepatotoxicity induced by trovafloxacin. Hepatology. 2005;41:177–86.

    Article  CAS  PubMed  Google Scholar 

  • Lim YP, Kuo SC, Lai ML, Huang JD. Inhibition of CYP3A4 expression by ketoconazole is mediated by the disruption of pregnane X receptor, steroid receptor coactivator-1, and hepatocyte nuclear factor 4alpha interaction. Pharmacogenet Genomics. 2009;19:11–24.

    Article  CAS  PubMed  Google Scholar 

  • Mersch-Sundermann V, Knasmuller S, Wu XJ, Darroudi F, Kassie F. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology. 2004;198:329–40.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther. 1973a;187:185–94.

    CAS  PubMed  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther. 1973b;187:211–7.

    CAS  PubMed  Google Scholar 

  • Nourjah P, Ahmad SR, Karwoski C, Willy M. Estimates of acetaminophen (Paracetomal)-associated overdoses in the United States. Pharmacoepidemiol Drug Saf. 2006;15:398–405.

    Article  PubMed  Google Scholar 

  • O’Brien PJ, Irwin W, Diaz D, et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 2006;80:580–604.

    Article  PubMed  Google Scholar 

  • Ogawa S, Surapisitchat J, Virtanen C, et al. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development. 2013;140:3285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology. 2008;245:194–205.

    Article  CAS  PubMed  Google Scholar 

  • Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther. 1973;187:203–10.

    CAS  PubMed  Google Scholar 

  • Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther. 2005;312:509–16.

    Article  CAS  PubMed  Google Scholar 

  • Richert L, Tuschl G, Abadie C, et al. Use of mRNA expression to detect the induction of drug metabolising enzymes in rat and human hepatocytes. Toxicol Appl Pharmacol. 2009;235:86–96.

    Article  CAS  PubMed  Google Scholar 

  • Sesardic D, Boobis AR, Murray BP, et al. Furafylline is a potent and selective inhibitor of cytochrome P4501A2 in man. Br J Clin Pharmacol. 1990;29:651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Kawabata K, Nagamoto Y, et al. 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials. 2013;34:1781–9.

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Morisaki Y, Kuno S, et al. Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proc Natl Acad Sci U S A. 2014;111:16772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SH. Paracetamol (acetaminophen) poisoning. Pharmacol Ther. 1993;60:91–120.

    Article  CAS  PubMed  Google Scholar 

  • Touboul T, Hannan NR, Corbineau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51:1754–65.

    Article  CAS  PubMed  Google Scholar 

  • Van Summeren A, Renes J, van Delft JH, Kleinjans JC, Mariman EC. Proteomics in the search for mechanisms and biomarkers of drug-induced hepatotoxicity. Toxicol In Vitro. 2012;26:373–85.

    Article  PubMed  Google Scholar 

  • Vosough M, Omidinia E, Kadivar M, et al. Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells Dev. 2013;22:2693–705.

    Article  CAS  PubMed  Google Scholar 

  • Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos. 2003;31:1035–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by research funds from Animal and Plant Quarantine Agency (QIA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Goo Kang.

Ethics declarations

The experiments were approved by the ethics committee of QIA, Republic of Korea.

Additional information

Language service

https://webshop.elsevier.com/languageediting/projectDetails.cfm?project_id=79491

Seok-Jin Kang and Hyuk-Mi Lee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29 kb)

ESM 2

(DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SJ., Lee, HM., Park, YI. et al. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2. Cell Biol Toxicol 32, 403–417 (2016). https://doi.org/10.1007/s10565-016-9342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9342-0

Keywords

Navigation