Skip to main content
Log in

Comprehensive analysis of genotoxic effects and antioxidative defence mechanisms in plant test system exposed to 1800 MHz electromagnetic radiations: a root chromosomal aberration and FTIR spectroscopy approach

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The proliferation of wireless communication devices has increased the exposure of living organisms to electromagnetic field radiations (EMF-rs), posing potential risks to various biological systems. The present study was planned to explore the genotoxic effects and oxidative stress responses of 1800 MHz electromagnetic radiations in Trigonella foenum-graecum L. plant test system. The study also pertained to assess the changes in functional groups using Fourier transform infrared spectroscopy (FTIR).

Methods

Twenty seeds of Trigonella foenum-graecum L. were placed in Petri plates lined with autoclaved Whatman No. 1 filter paper. The seeds were evenly distributed and maintained at temperature 25 ± 2 °C and relative humidity 55–60%. The seeds were placed in Petri plates along with the exposure apparatus (antenna) and then enclosed within a chamber consisting of two layers of aluminium sheets. The treatment was administered every day for seven days on various parameters.

Results

The investigation showed that increasing the duration of EMR exposure significantly decreased protein content and increased MDA content in seedlings. However, exposure to EMRs for 4 and 8 h per day led to increased activities of different antioxidant enzymes, including guaiacol peroxidase (POD), glutathione-S-transferase (GST), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and superoxide dismutase (SOD). The study also calculated the specific absorption rate using the biological heat transfer equation, which revealed harmful effects of the radiations on the test system by interfering with biochemical processes, leading to genotoxic and oxidative stress.

Conclusion

The findings suggest that electromagnetic radiations induced oxidative stress in T. foenum-graecum L. and increased activity of antioxidant enzymes as a protective mechanism against cellular damage. The study highlights the potential risks associated with EMF radiations on plant systems and underscores the importance of further research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The corresponding author can be contacted to request access to the data, which will be made available.

References

  1. Chandel S, Kaur S, Issa M, Singh HP, Batish DR, Kohli RK (2019) Appraisal of immediate and late effects of mobile phone radiations at 2100 MHz on mitotic activity and DNA integrity in root meristems of Allium cepa. Protoplasma 256:1399–1407. https://doi.org/10.1007/s00709-019-01386-y

    Article  CAS  PubMed  Google Scholar 

  2. Zhong Z, Wang X, Yin X, Tian J, Komatsu S (2021) Morphophysiological and proteomic responses on plants of irradiation with electromagnetic waves. Int J Mol Sci 22(22):12239. https://doi.org/10.3390/ijms222212239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jagetia GC (2022) Genotoxic effects of electromagnetic field radiations from mobile phones. Environ Res 212:113321. https://doi.org/10.1016/j.envres.2022.113321

    Article  CAS  PubMed  Google Scholar 

  4. Levitt BB, Lai H (2010) Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev 18:369–395. https://doi.org/10.1139/A10-018

    Article  Google Scholar 

  5. Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G (2017) Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct 5(4):167–176. https://doi.org/10.1016/j.jmau.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP (2015) Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicol 51:158–165. https://doi.org/10.1016/j.neuro.2015.10.009

    Article  CAS  Google Scholar 

  7. Yurekli AI, Ozkan M, Kalkan T, Saybasili H, Tuncel H, Atukeren P, Seker S (2006) GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn Biol Med 25(3):177–188. https://doi.org/10.1080/15368370600875042

    Article  CAS  PubMed  Google Scholar 

  8. Chandel S, Kaur S, Singh HP, Batish DR (2017) Kohli RK (2017) Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. J Microsc Ultrastruct 5(4):225–229. https://doi.org/10.1016/j.jmau.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumar A, Kaur S, Chandel S, Singh HP, Batish DR, Kohli RK (2020) Comparative cyto-and genotoxicity of 900 MHz and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa. Ecotoxicol Environ Saf 188:109786. https://doi.org/10.1016/j.ecoenv.2019.109786

    Article  CAS  PubMed  Google Scholar 

  10. Di Meo S, Venditti P (2020) Evolution of the knowledge of free radicals and other oxidants. Oxi Med Cell Longev. https://doi.org/10.1155/2020/9829176

    Article  Google Scholar 

  11. Abbasova MT, Gadzhiev AM (2022) The effects of electromagnetic radiation on lipid peroxidation and antioxidant status in rat blood. Biophys 67(1):100–105. https://doi.org/10.1134/S000635092201002X

    Article  CAS  Google Scholar 

  12. Halliwell B, Gutteridge J (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. https://doi.org/10.1042/bj2190001

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bera K, Dutta P, Sadhukhan S (2022) Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Rep 41(1):53–73. https://doi.org/10.1007/s00299-021-02798-y

    Article  CAS  PubMed  Google Scholar 

  14. Jia P, Dai C, Cao P, Sun D, Ouyang R, Miao Y (2020) The role of reactive oxygen species in tumor treatment. Rsc Adv 10(13):7740–7750. https://doi.org/10.1039/C9RA10539E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tkalec M, Malarić K, Pevalek-Kozlina B (2005) Influence of 400, 900 and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. Bioelectromagnetics 26(3):185–193. https://doi.org/10.1002/bem.20104

    Article  CAS  PubMed  Google Scholar 

  16. Ragha L, Mishra S, Ramachandran V, Bhatia MS (2011) Effects of low-power microwave fields on seed germination and growth rate. J Electromagn Anal Appl (Vol. 3 No. 5) - 7. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=5024.

  17. Halgamuge MN, Yak SK, Eberhardt JL (2015) Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station. Bioelectromagnetics 36(2):87–95. https://doi.org/10.1002/BEM.21890

    Article  PubMed  Google Scholar 

  18. Vian A, Davies E, Gendraud M, Bonnet P (2016) Plant responses to high frequency electromagnetic fields. BioMed Res Int. https://doi.org/10.1155/2016/1830262

    Article  PubMed  PubMed Central  Google Scholar 

  19. Borzouei A, Kafi M, Khazaei H, Naseriyan B, Majdabadi A (2010) Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak. J. Bot 42(4):2281–2290

    CAS  Google Scholar 

  20. Gustavino B, Carboni G, Petrillo R, Paoluzzi G, Santovetti E, Rizzoni M (2016) Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips. Mutagenesis 31(2):187–192. https://doi.org/10.1093/mutage/gev071

    Article  CAS  PubMed  Google Scholar 

  21. Upadhyaya C, Upadhyaya T, Patel I (2022) Attributes of non-ionizing radiation of 1800 MHz frequency on plant health and antioxidant content of Tomato (Solanum Lycopersicum) plants. JRRAS 15(1):54–68. https://doi.org/10.1016/j.jrras.2022.02.001

    Article  CAS  Google Scholar 

  22. Ozel HB, Cetin M, Sevik H, Varol T, Isik B, Yaman B (2021) The effects of base station as an electromagnetic radiation source on flower and cone yield and germination percentage in Pinus brutia Ten. Biol Futura 72(3):359–365. https://doi.org/10.1007/s42977-021-00085-1

    Article  CAS  Google Scholar 

  23. Salama N, Kishimoto T, Kanayama HO, Kagawa S (2010) Effects of exposure to a mobile phone on sexual behavior in adult male rabbit: an observational study. Int J Impot Res 22(2):127–133. https://doi.org/10.1038/ijir.2009.57

    Article  CAS  PubMed  Google Scholar 

  24. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R (2009) Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril 92(4):1318–1325. https://doi.org/10.1016/j.fertnstert.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  25. Falzone N, Huyser C, Becker P, Leszczynski D, Franken DR (2011) The effect of pulsed 900-MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int J Androl 34(1):20–26. https://doi.org/10.1111/j.1365-2605.2010.01054.x

    Article  CAS  PubMed  Google Scholar 

  26. Luo J, Deziel NC, Huang H, Chen Y, Ni X, Ma S, Zhang Y (2019) Cell phone use and risk of thyroid cancer: a population-based case–control study in Connecticut. Ann Epidemiol 29:39–45. https://doi.org/10.1016/j.annepidem.2018.10.004

    Article  PubMed  Google Scholar 

  27. Balasubramanian S, Devi A, Singh KK, Bosco SJD (2013) Thermal properties of ambient ground fenugreek (Trigonella foenum-graceum L.). Adv Appl Res 5(1):37–42

    Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  29. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase. Plant and Cell Physiol. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  Google Scholar 

  30. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480. https://doi.org/10.1016/S0021-9258(19)41206-4

    Article  CAS  PubMed  Google Scholar 

  31. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione -S-transferases. Meth Enzymol 77:398–405. https://doi.org/10.1016/S0076-6879(81)77053-8

    Article  CAS  Google Scholar 

  32. Sanchez M, Revilla G, Zarra I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75(4):415–419. https://doi.org/10.1006/anbo.1995.1039

    Article  CAS  Google Scholar 

  33. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem 186(1):189–195. https://doi.org/10.1016/0003-9861(78)90479-4

    Article  CAS  PubMed  Google Scholar 

  34. Aebi H (1974) Catalase. In: Methods of enzymatic analysis (pp. 673–684). Academic press. https://doi.org/10.1016/B978-0-12-091302-2.50032-3.

  35. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  36. Katnoria JK, Arora S, Bhardwaj R, Nagpal A (2011) Evaluation of genotoxic potential of industrial waste contaminated soil extracts of Amritsar. India J Environ Biol 32(3):363

    CAS  PubMed  Google Scholar 

  37. Guo Q, Dai E, Han X, Xie S, Chao E, Chen Z (2015) Fast nastic motion of plants and bioinspired structures. J R Soc Interface. 12:20150598. https://doi.org/10.1098/rsif.2015.0598

    Article  PubMed  PubMed Central  Google Scholar 

  38. Witzany G (2006) Plant communication from biosemiotic perspective: differences in abiotic and biotic signal perception determine content arrangement of response behavior. Context determines meaning of meta-, inter-and intraorganismic plant signaling. Plant signal Behav. https://doi.org/10.4161/psb.1.4.3163

    Article  PubMed  PubMed Central  Google Scholar 

  39. Trewavas A (2009) What is plant behaviour? Plant, Cell Environ 32(6):606–616. https://doi.org/10.1111/j.1365-3040.2009.01929.x

    Article  PubMed  Google Scholar 

  40. Llauradó Maury G, Méndez Rodríguez D, Hendrix S, Escalona Arranz JC, Fung Boix Y, Pacheco AO, Cuypers A (2020) Antioxidants in plants: a valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants. https://doi.org/10.3390/antiox9111048

    Article  PubMed Central  Google Scholar 

  41. Alattar EM, Elwasife KY, Radwan ES, Elrifi YA (2017) Response of corn (Zea mays), basil (Ocimum basilicum) and eggplant (Solanum melongena) seedlings to Wi-Fi radiation. Rom J Biophys, 27(4).

  42. Akbal A, Kıran Y, Şahin A, Turgut Balik D, Balık HH (2012) Effects of electromagnetic waves emitted by mobile phones on germination, root growth, and root tip cell mitotic division of Lens culinaris Medik. Pol J Environ Stud. https://hdl.handle.net/20.500.12294/462.

  43. Chen YC, Chen C (2014) Effects of mobile phone radiation on germination and early growth of different bean species. Pol J Environ Stud 23(6):1949–1958

    CAS  Google Scholar 

  44. Leena P, Pooja M (2015) Effects of 2G and 3G mobile phone radiations on germination of seeds and growth of seedlings of pulses. J Chem Pharm Res 7(3):268–271

    Google Scholar 

  45. Barceló JUAN, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37. https://doi.org/10.1080/01904169009364057

    Article  Google Scholar 

  46. Ai TN, Naing AH, Yun BW, Lim SH, Kim CK (2018) Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Front Plant Sci 9:1388. https://doi.org/10.3389/fpls.2018.01388

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khan MD, Ali S, Azizullah A, Shuijin Z (2018) Use of various biomarkers to explore the effects of GSM and GSM-like radiations on flowering plants. Environ Sci Pollut Res 25(25):24611–24628. https://doi.org/10.1007/s11356-018-2734-3

    Article  CAS  Google Scholar 

  48. Shao HB, Chu LY, Shao MA, Jaleel CA, Hong-mei M (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331(6):433–441. https://doi.org/10.1016/j.crvi.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  49. Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69. https://doi.org/10.3389/fpls.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gómez R, Vicino P, Carrillo N, Lodeyro AF (2019) Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops From damage to signaling to tolerance. Crit Rev Biotechno 39:693–708. https://doi.org/10.1080/07388551.2019.1597829

    Article  CAS  Google Scholar 

  51. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci J 164(4):645–655. https://doi.org/10.1016/S0168-9452(03)00022-0

    Article  CAS  Google Scholar 

  52. Monk LS, Fagerstedt KV, Crawford RM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76(3):456–459. https://doi.org/10.1111/j.1399-3054.1989.tb06219.x

    Article  CAS  Google Scholar 

  53. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149(1):43–50. https://doi.org/10.1016/S0300-483X(00)00231-6

    Article  CAS  PubMed  Google Scholar 

  54. Rajput VD, Harish Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Mandzhieva S (2021) Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 10(4):267. https://doi.org/10.3390/biology10040267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mannervik B (1999) Measurement of glutathione reductase activity. Curr Protoc Toxicol 1:7–2. https://doi.org/10.1002/0471140856.tx0702s00

    Article  Google Scholar 

  56. Bhagat J, Ingole BS, Singh N (2016) Glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: a review. Invertebr Surviv J 13(1):336–349. https://doi.org/10.25431/1824-307X/isj.v13i1.336-349

    Article  Google Scholar 

  57. Helaoui S, Boughattas I, Hattab S, Mkhinini M, Alphonse V, Livet A, Banni M (2020) Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure. Chemosphere 249:126121. https://doi.org/10.1016/j.chemosphere.2020.126121

    Article  CAS  PubMed  Google Scholar 

  58. Sharma S, Bahel S, Kaur Katnoria J (2022) Evaluation of oxidative stress and genotoxicity of 900 MHz electromagnetic radiations using Trigonella foenum-graecum test system. Protoplasma. https://doi.org/10.1007/s00709-022-01768-9

    Article  PubMed  Google Scholar 

  59. Singh HP, Sharma VP, Batish DR, Kohli RK (2012) Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ Monit Assess 184(4):1813–1821. https://doi.org/10.1007/s10661-011-2080-0

    Article  CAS  PubMed  Google Scholar 

  60. Roychoudhury A, Basu S (2012) Ascorbate-glutathione and plant tolerance to various abiotic stresses. Oxidative stress in plants: causes, consequences and tolerance 177–258.

  61. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci J 161(6):1135–1144. https://doi.org/10.1016/S0168-9452(01)00517-9

    Article  CAS  Google Scholar 

  62. Kareska S (2010) Factors affecting hydrogen peroxidase activity. ESSAI 7(1) 27. http://dc.cod.edu/essai?utm_source=dc.cod.edu%2Fessai%2Fvol7%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages.

  63. Sharma VP, Singh HP, Batish DR, Kohli RK (2010) Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations. Zeitschrift für Naturforschung C 65(1–2):66–72. https://doi.org/10.1515/znc-2010-1-212

    Article  CAS  Google Scholar 

  64. Afzal M, Mansoor S (2012) Effect of mobile phone radiations on morphological and biochemical parameters of Mung bean (Vigna radiata) and wheat (Triticum aestivum) seedlings. Asian J Agric Sci 4(2):149–152

    Google Scholar 

  65. Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67(1):44–50. https://doi.org/10.1016/j.chemosphere.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  66. Calabrò E, Goswami HK, Magazù S (2020) Chromosome aberration in typical biological systems under exposure to low-and high-intensity magnetic fields. Electromagn Biol Med 39(2):97–108. https://doi.org/10.1080/15368378.2020.1737812

    Article  PubMed  Google Scholar 

  67. Dogan A, Siyakus G, Severcan F (2007) FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chem 100(3):1106–1114. https://doi.org/10.1016/j.foodchem.2005.11.017

    Article  CAS  Google Scholar 

  68. Geethu MG, Suchithra PS, Kavitha CH, Aswathy JM, Dinesh B, Murugan K (2014) Fourier-transform infrared spectroscopy analysis of different solvent extracts of water hyacinth (Eichhornia crassipes Mart Solms) an allelopathic approach. WJPPS 3:1256–1266

    Google Scholar 

  69. Wilson RH, Smith AC, Kacuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124(1):397–406. https://doi.org/10.1104/pp.124.1.397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jamin N, Dumas P, Moncuit J, Fridman WH, Teillaud JL, Carr GL, Williams GP (1998) Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc Natl Acad Sci 95(9):4837–4840. https://doi.org/10.1073/pnas.95.9.4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toyran N, Zorlu F, Dönmez G, Öğe K, Severcan F (2004) Chronic hypoperfusion alters the content and structure of proteins and lipids of rat brain homogenates: a Fourier transform infrared spectroscopy study. Eur Biophys J 33(6):549–554. https://doi.org/10.1007/s00249-004-0396-1

    Article  CAS  PubMed  Google Scholar 

  72. Dutta R, Angmo D, Singh J, Chowdhary AB, Quadar J, Singh S, Vig AP (2023) Synergistic Effect of Biochar amendment in Milk Processing Industry Sludge and Cattle dung during the Vermiremediation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2023.128612

    Article  PubMed  Google Scholar 

  73. Van de Voort FR, Ismail AA, Sedman J, Emo G (1994) Monitoring the oxidation of edible oils by Fourier transform infrared spectroscopy. J Am Oil Chem Soc 71(3):243–253. https://doi.org/10.1007/BF02638049

    Article  Google Scholar 

  74. Yadav DS, Rai R, Mishra AK, Chaudhary N, Mukherjee A, Agrawal SB, Agrawal M (2019) ROS production and its detoxification in early and late sown cultivars of wheat under future O3 concentration. Sci Total Environ 659:200–210. https://doi.org/10.1016/j.scitotenv.2018.12.352

    Article  CAS  PubMed  Google Scholar 

  75. Kumar A, Prasad MNV (2018) Plant-lead interactions: transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol Environ Safety 166:401–418. https://doi.org/10.1016/j.ecoenv.2018.09.113

    Article  CAS  PubMed  Google Scholar 

  76. Devine PJ, Perreault SD, Luderer U (2012) Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 86(2):27–31. https://doi.org/10.1016/j.ecoenv.2018.09.113

    Article  CAS  PubMed  Google Scholar 

  77. Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70. https://doi.org/10.3389/fenvs.2014.00070

    Article  Google Scholar 

  78. Kumari A, Kaur R (2019) Modulation of biochemical and physiological parameters in Hordeum vulgare L. seedlings under the influence of benzyl-butyl phthalate. PeerJ. https://doi.org/10.7717/peerj.6742

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to read and interpret FTIR spectroscope of organic material. Ind J Sci Technol 4(1):97–118. https://doi.org/10.17509/ijost.v4i1.15806

    Article  Google Scholar 

Download references

Acknowledgements

The present work was carried out using financial assistance under Rashtriya Uchchatar Shiksha Abhiyan 2.0, Ministry of Human Resource Development, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

JKK and SB conceptualized the idea, designed the experiment and reviewed the overall manuscript. SS performed the whole experiment, wrote the original draft, compiled the overall manuscript and analysed the findings. PS and JS assisted in the analysis work related to FTIR.

Corresponding author

Correspondence to Jatinder Kaur Katnoria.

Ethics declarations

Conflict of interest

On behalf of all authors Surbhi Sharma, Priyanka Sharma, Shalini Bahel, Joat Singh, and Jatinder Kaur Katnoria the corresponding author states that there is no conflict of interest.

Consent to publish

There is no need for consent to publish this paper.

Ethics approval and consent to participate

No need.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 426 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sharma, P., Bahel, S. et al. Comprehensive analysis of genotoxic effects and antioxidative defence mechanisms in plant test system exposed to 1800 MHz electromagnetic radiations: a root chromosomal aberration and FTIR spectroscopy approach. Toxicol. Environ. Health Sci. 15, 385–398 (2023). https://doi.org/10.1007/s13530-023-00190-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00190-9

Keywords

Navigation