Skip to main content
Log in

Chronic cassava meal modulates body weight, histology and weight of reproductive organs in male albino rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

This study evaluated the effect of chronic cassava meals on some reproductive parameters of male albino rats.

Methods

Twenty-four sexually mature albino rats were divided into four groups which received oral treatments from a variety of cassava products containing cyanogenic glycosides in varying quantities: Group A—Control (received 300 g normal rat feeds); Group B (received 50 g red garri at a concentration of 150 ppm cyanogenic glycosides/rat/day); Group C (received 50 g white garri at a concentration of 200 ppm cyanogenic glycosides/rat/day); and Group D (received 50 g raw cassava at a concentration of 400 ppm cyanogenic glycosides/rat/day). After 60 days of treatment, male reproductive organs were harvested from the rats for histological examination. Also noted were the weights of the body and the organs.

Results

The weight of the body and reproductive organs significantly changed in group D after receiving raw cassava at a dose of 400 ppm/rat/day. Compared to the group treated with red garri at 100 ppm/rat/day cyanogenic glycosides, which showed no significant changes in body weight gain or the weight of the reproductive organs, the white garri group showed substantial changes in the testis and prostate weight. The group given 150 ppm/rat/day of red garri did not exhibit any changes in histology, but the groups given 150 ppm/rat/day of white garri and 400 ppm/rat/day of raw cassava displayed testicular atrophy, degeneration, vacuolation, decreased secretion, and desquamation of glandular epithelium in the prostate.

Conclusions

This study has revealed that the concentration of cyanogenic glycosides is higher in raw cassava and white garri than red garri, and that 400 ppm/day of cyanogenic glycosides may have negative impacts on their ability to reproduce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data presented in this study are available on request from the corresponding author.

References

  1. Talsma EF, Borgonjen-van den Berg KJ, Melse-Boonstra A, Mayer EV, Verhoef H, Demir AY (2018) The potential contribution of yellow cassava to dietary nutrient adequacy of primary-school children in Eastern Kenya; the use of linear programming. Public Health Nutr 21:365–376

    Article  PubMed  Google Scholar 

  2. Egbune EO, Avwioroko OJ, Anigboro AA, Aganbi E, Amata AI, Tonukari NJ (2022) Characterization of a surfactant-stable α-amylase produced by solid-state fermentation of cassava (Manihot esculenta Crantz) tubers using Rhizopusoligosporus: kinetics, thermal inactivation thermodynamics and potential application in laundry industries. Biocatal Agric Biotechnol 39:102290

    Article  CAS  Google Scholar 

  3. Mombo S, Dumat C, Shahid M, Schreck E (2017) A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption. Environ Sci Pollut Res Int 24:5207–5221

    Article  CAS  PubMed  Google Scholar 

  4. De Moura FF, Moursi M, Lubowa A, Ha B, Boy E, Oguntona B (2015) Cassava intake and vitamin A status among women and preschool children in Akwa-Ibom. Nigeria PLoS One 10:e0129436

    Article  PubMed  Google Scholar 

  5. Sanni LO, Babajide JM, Ojerinde MW (2007) Effect of chemical pre-treatments on the physico-chemical and sensory attributes of Sweet potato-gari. ASSET Int J Agric Sci Environ Technol Ser B 6(1):41–49

    Google Scholar 

  6. Egbune EO, Aganbi E, Anigboro AA, Ezedom T, Onojakpo O, Amata AI, Tonukari NJ (2023) Biochemical characterization of solid-state fermented cassava roots (Manihot esculenta Crantz) and its application in broiler feed formulation. World J Microbio Biotech 39(2):1–12

    Google Scholar 

  7. FAO (1990) Food and Agricultural Organization of the United Nations: Production Yearbook 44, Rome

  8. Mroso PV (2003) Cassava, an emerging food product: the consequence of its popularity. Int J Food Sci 42:969–979

    Google Scholar 

  9. Zidenga T, Siritunga D, Sayre RT (2017) Cyanogen metabolism in cassava roots: impact on protein synthesis and root development. Front Plant Sci 8:1–12

    Article  Google Scholar 

  10. Egbune EO, Ezedom T, Anigboro AA, Aganbi E, Amata AI, Tonukari NJ (2022) Antioxidants and antigenotoxic properties of Rhizopus oligosporus fermented cassava (Manihot esculenta Crantz). Afr J Biochem Res 16(3):39–46

    Article  Google Scholar 

  11. Shibamoto TB (2009) Introduction to food toxicology, 2nd edn. Acad Press California, Cambridge, pp 124–154

    Google Scholar 

  12. Chaouali N, Gana I, Dorra A,Khelifi F, Nouioui A, Masri W (2013) Potential toxic levels of cyanide in almonds (Prunus amygdalus), apricot kernels (Pruns armeniaca), and almond syrup. ISRN Toxicol 610648

  13. Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194

    Article  CAS  PubMed  Google Scholar 

  14. Enidiok SE, Attah LE, Otuechere CA (2008) Evaluation of moisture, total cyanide and fiber contents of garri produced from cassava (Manihotutilissima) varieties obtained from Awassa in southern Ethiopia. Pakistan J Nutr 7:625–629

    Article  CAS  Google Scholar 

  15. Enefa S, Paul CW, David LK (2020) Model of Konzo Disease: Reviewing the Effect of Bitter Cassava Neurotoxicity on the Motor Neurons of Cassava-Induced Konzo Disease onWistar Rats. Saudi J Med 5(11):336–348

    Article  Google Scholar 

  16. Tshala-Katumbay DD, Ngombe NN, Okitundu D, David L, Westaway SK, Boivin MJ (2016) Cyanide and the human brain: perspectives from a model of food (cassava) poisoning. Ann NY Acad Sci 1378:50–57

    Article  CAS  PubMed  Google Scholar 

  17. Bumoko GM, Sombo MT, Okitundu LD, Mumba DN, Kazadi KT, Tamfum-Muyembe JJ (2014) Determinants of cognitive performance in children relying on cyanogenic cassava as staple food. Metab Brain Dis 29:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Udeme N, Okafor P, Eleazu C (2015) The metabolic effects of consumption of yellow cassava (Manihot esculenta Crantz) on some biochemical parameters in experimental rats. Int J Toxicol 34:559–564

    Article  CAS  PubMed  Google Scholar 

  19. Manzano H, de Sousa AB, Soto-Blanco B, Guerra JL, Maiorka PC, Górniak SL (2007) Effects of long-term cyanide ingestion by pigs. Vet Res Commun 31:93–104

    Article  CAS  PubMed  Google Scholar 

  20. Kamalu BP (1993) Pathological changes in growing dogs fed on a balanced cassava (Manihot esculenta Crantz) diet. Br J Nutr 69:921–934

    Article  CAS  PubMed  Google Scholar 

  21. Cunha LA, Mota TC, Cardoso PC, Alcantara DD, Burbano RM, Guimaraes AC (2016) In vitro assessment of the genotoxic and cytotoxic effects of boiled juice (tucupi) from Manihot esculenta Crantz roots. Genet Mol Res 15(4):1–8

  22. Rivadeneyra DE, Rodriguez-Landa JF (2019) Preclinical and clinical research on the toxc and neurological effects of cassava (Manihot esculenta Crantz) consumption. Metab Brain Dis 35(1):65–74

    Article  Google Scholar 

  23. Maliki OO, Alagbonsi AI, Ibitoye CM, Olayaki LA (2021) Melatonin and Vitamin C modulate cassava diet-induced alteration in reproductive and thyroid functions. Niger J Exp Clin Biosci 9:133–143

    Article  Google Scholar 

  24. Paulinus ON, Obaika US (2013) A comparative study of the toxic effects of prolonged intake of cassava-borne organic cyanide and inorganic cyanide in some rabbit tissues. J Pharm Sci Innov 2:65–69

    Article  CAS  Google Scholar 

  25. Chandra A, Coper CE, Stephen EH (2013) Infertility and impaired fecundity in the United States, 1982–2010: data from the national survey of family growth. Natl Health Stat Rep 67:1–19

    Google Scholar 

  26. Yelsili C, Mungan G, Seckines I, Akduman B (2005) Effects of varicoelectomy on sperm creation kinase. Reprod Toxicol 66:610–615

    Google Scholar 

  27. Bonde JP (1996) Environmental factors in comhaire investigation, cause evaluation and treatment. Chapman and Hall, London, pp 267–284

    Google Scholar 

  28. Orororo OC, Asagba SO, Tonukari NJ, Okandeji OJ, Mbanugo JJ (2018) Hibiscus sabdarrifa L. Anthocyanins-induced changes in reproductive hormones of cadmium-exposed rats. Int J Sci Res 12(4):308–311

    Google Scholar 

  29. Orororo OC, Asagba SO, Egbune EO, Efejene OI (2022) Sperm parameters and histological changes in testes of cadmium-exposed rats treated with Hibiscus sabdarrifa L. anthocyanins. Sokoto J Med Lab Sci 7(3):114–122

    Article  Google Scholar 

  30. Harborne JB (1973) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman & Hall, London

    Google Scholar 

  31. Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates CG (2000) Processing of cassava waste for improved biomass utilization. Bioresour Technol 71:63–69

    Article  CAS  Google Scholar 

  32. Oghobase GE, Aladesanmi OT, Akomolafe RO, Olukiran OS, Akano PO, Eimunjeze MH (2020) Assessment of the toxicity and biochemical effects of detergent processed cassava on renal function of Wistar rats. Toxicol Rep 7:1103–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li S, Ma Y, Ji T, Sameen DE, Ahmed S, Qin W, Liu Y (2020) Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr Polym 248:116805

    Article  CAS  PubMed  Google Scholar 

  34. Nizzy AM, Kannan S (2022) A review on the conversion of cassava wastes into value-added products towards a sustainable environment. Environ. Sci Pollut Res 29(46):69223–69240

  35. Adegbeye MJ, Salem AZM, Reddy PRK, Elghandour MMM, Oyebamiji KJ (2020) Waste recycling for the eco-friendly input use efficiency in agriculture and livestock feeding. In: Resources use efficiency in agriculture. Springer, Singapore, pp 1–45

  36. Souza CMM, Bastos TS, Kaelle GCB, Bortolo M, Vasconcellos RS, De Oliveira SG, Félix AP (2021) Comparison of cassava fiber with conventional fiber sources on diet digestibility, fecal characteristics, intestinal fermentation products, and fecal microbiota of dogs. Anim Feed Sci Technol 281:115092

    Article  Google Scholar 

  37. Morgan NK, Choct M (2016) Cassava: nutrient composition and nutritive value in poultry diets. Anim Nutr 2:253–261

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rosas-JarquínChJ R-D, León-Chávez BA, Nadella R, Sánchez-García AC, Rembao-Bojórquez D, Rodríguez-Landa JF, Hernandez-BaltazarD, (2020) Chronic consumption of cassava juice induces cellular stress in rat substantianigra. Iran J Basic Med Sci 23:93–101. https://doi.org/10.22038/IJBMS.2019.38460.9131

    Article  Google Scholar 

  39. Akapo AO, Oso AO, Bamgbose AM, Sanwo KA, Jegede AV, Sobayo RA, Idowu OM, Fan J, Li L, Olorunsola RA (2014) Effect of feeding cassava (Manihot esculenta Crantz) root meal on growth performance, hydrocyanide intake and haematological parameters of broiler chicks. Trop Anim Health Prod 46(7):1167–1172. https://doi.org/10.1007/s11250-014-0622-5

    Article  PubMed  Google Scholar 

  40. Rivadeneyra DE, Rodriguez-Landa JF (2016) Motor impairments induced by injection of linamarin in the dorsal hippocampus of Wistar rats. J Neurol 31(8):516–522

    Google Scholar 

  41. Ebeye OA (2018) The effect of processed cassava products (“Tapioca and Gari”) on weight and haematological indices of Wistar rats. Int J Basic Appl Innov Res 7(1):35–40

    CAS  Google Scholar 

  42. Airaodion AI, Ene AC, Ogbuagu EO, Okoroukwu VN, Ekenjoku JA, Ogbuagu U (2019) Biochemical changes associated with consumption (by rats) of “garri” processed by traditional and instant mechanical methods. Asian J Biochem Genet 2(4):1–11

    Google Scholar 

  43. Cope RB (2020) Acute cyanide toxicity and its treatment: the body is dead and may be red but does not stay red for long. In: Handbook of toxicology of chemical warfare agents. Academic Press, Cambridge, pp 373–388

  44. Nielson JR, Nath AK, Doane KP, Shi X, Lee J, Tippetts EG, Peterson RT (2022) Glyoxylate protects against cyanide toxicity through metabolic modulation. Sci Rep 12(1):1–16

    Article  Google Scholar 

  45. Zuhra K, Szabo C (2022) The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J 289(9):2481–2515

    Article  CAS  PubMed  Google Scholar 

  46. Itakorode BO, Okonji RE, Torimiro N (2022) Cyanide bioremediation potential of Klebsiellaoxytoca JCM 1665 rhodanese immobilized on alginate-glutaraldehyde beads. Biocatal Biotransform 1–10

  47. Wrobel M, Jurkowska H, Sliwa L, Srebro Z (2004) Increased in antioxidant activity in cyanide treated rats. Toxicol Mech Methods 14:331–337

    CAS  PubMed  Google Scholar 

  48. Satpute RM, Bhutia YD, Lomash V, Bhattacharya R (2019) Efficacy assessment of co-treated alpha-ketoglutarate and N-acetyl cysteine against the subchronic toxicity of cyanide in rats. Toxicol Ind Health 35(6):410–423

    Article  CAS  PubMed  Google Scholar 

  49. Atobrah EE (2020) Orange-fleshed sweet potato (ofsp)–cassava composite gari: effects of processing variables and storage on beta-carotene and sensory qualities. Doctoral dissertation, University of Cape Coast.

  50. Agarwal A, Leisegang K, Sengupta P (2020) Oxidative stress in pathologies of male reproductive disorders. In: Pathology. Academic Press: Cambridge, pp 15–27

  51. Michelucci A, Liang C, Protasi F, Dirksen RT (2021) Altered Ca2+ handling and oxidative stress underlie mitochondrial damage and skeletal muscle dysfunction in aging and disease. Metabolites 11(7):424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cázares-Camacho R, Domínguez-Avila JA, Astiazarán-García H, Montiel-Herrera M, González-Aguilar GA (2021) Neuroprotective effects of mango cv. ‘Ataulfo’peel and pulp against oxidative stress in streptozotocin-induced diabetic rats. J Sci Food Agric 101(2):497–504

    Article  PubMed  Google Scholar 

  53. Cooper TG, Yeung CH (2010) Physiology of sperm maturation and fertilization E. Nieschlag. Eur J Endocrinol 25(4):200–210

    Google Scholar 

  54. Zhang X (2021) Isolation, molecular composition, and immune regulatory functions of extracellular vesicles from seminal plasma. Doctoral dissertation, Utrecht University

  55. Elbashir S, Magdi Y, Rashed A, Henkel R, Agarwal A (2021) Epididymal contribution to male infertility: an overlooked problem. Andrologia 53(1):e13721

    Article  PubMed  Google Scholar 

  56. Ozkocer SE, Konac E (2021) The current perspective on genetic and epigenetic factors in sperm maturation in the epididymis. Andrologia 53(3):e13989

    Article  CAS  PubMed  Google Scholar 

  57. Homa S (2020) Handling unhealthy or poor-quality sperm samples in a medically assisted reproduction laboratory. In: Textbook of assisted reproduction. Springer, Singapore, pp 767–777

  58. Heidari-Vala H, Sabouhi-Zarafshan S, Prud’homme B, Alnoman A, Manjunath P, (2020) Role of Binder of SPerm homolog 1 (BSPH1) protein in mouse sperm-egg interaction and fertilization. Biochem Biophys Res Commun 527(2):358–364

    Article  CAS  PubMed  Google Scholar 

  59. Bae JW, Kwon WS (2020) Investigating the effects of fipronil on male fertility: Insight into the mechanism of capacitation. Reprod Toxicol 94:1–7

    Article  CAS  PubMed  Google Scholar 

  60. Marín-Briggiler CI, Luque GM, Gervasi MG, Oscoz-Susino N, Sierra JM, Mondillo C, Buffone MG (2021) Human sperm remain motile after a temporary energy restriction but do not undergo capacitation-related events. Front Cell Dev Biol 9:777086

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pacher P (2021) Cyanide emerges as an endogenous mammalian gasotransmitter. Proc Natl Acad Sci 118(25):e2108040118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ilesanmi OB, Ikpesu T (2021) Neuromodulatory activity of trèvo on cyanide-induced neurotoxicity viz neurochemical, antioxidants, cytochrome C oxidase and p53. Adv Trad Med 21(2):297–304

    Article  CAS  Google Scholar 

  63. Vickram AS, Samad HA, Latheef SK, Chakraborty S, Dhama K, Sridharan TB, Gulothungan G (2020) Human prostasomes an extracellular vesicle–Biomarkers for male infertility and prostrate cancer: the journey from identification to current knowledge. Int J Biol Macromol 146:946–958

    Article  CAS  PubMed  Google Scholar 

  64. Vickram AS, Rohini K, Anbarasu K, Dey N, Jeyanthi P, Thanigaivel S, Arockiaraj J (2022) Semenogelin, a coagulum macromolecule monitoring factor involved in the first step of fertilization: a prospective review. Int J Biol Macromol 209:951–962

  65. Tonukari NJ, Oliseneku EE, Avwioroko OJ, Aganbi E, Orororo OC, Anigboro AA (2016) A novel pig feed formulation containing Aspergillus niger CSA35 pretreated-cassava peels and its effect on growth and selected biochemical parameters of pigs. Afr J Biotech 15(19):776–785

    Article  CAS  Google Scholar 

  66. Ojo I, Apiamu A, Egbune EO, Tonukari NJ (2022) Biochemical characterization of solid-state fermented cassava stem (Manihot esculenta Crantz-MEC) and its application in poultry feed formulation. Appl Biochem Biotech 194(6):2620–2631

    Article  CAS  Google Scholar 

  67. Tonukari NJ, Anigboro AA, Avwioroko OJ, Egbune EO, Ezedom T, Ajoh AI, Aganbi E (2023) Biochemical properties and biotechnological applications of cassava peels. Biotechn Mol Biol Rev 14(1):1–8

    Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies. The research was financed from the authors’ own funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egoamaka O. Egbune.

Ethics declarations

Conflict of interest

Olisemeke U. Egbune, Egoamaka O. Egbune, Osuvwe C. Orororo, Theresa Ezedom, Ogheneyoma Onojakpor, Ahmed M. Sabo and Kemakolam Amadi declare that we have no conflict of interest.

Ethical approval

The care and use of the animals and the experimental protocol were in accordance with the Ethical Committee and Experimental unit of the Animal House University of Jos. Ethical Clearance was applied for and obtained before the commencement of the study (UJ/2020/05/22).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egbune, O.U., Egbune, E.O., Orororo, O.C. et al. Chronic cassava meal modulates body weight, histology and weight of reproductive organs in male albino rats. Toxicol. Environ. Health Sci. 15, 257–266 (2023). https://doi.org/10.1007/s13530-023-00179-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00179-4

Keywords

Navigation