Skip to main content
Log in

Evaluation of dexamethasone and its combination with mineral supplements on the DNA compactness/breakage and the efficiency of antioxidant defense enzymes

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Dexamethasone, a synthetic glucocorticoid drug, is widely used as an anti-inflammatory/anti-allergic agent worldwide. Several previous studies suggested that in the inflammatory or enriched free radical condition, Dexamethasone directly binds to DNA leading to DNA breakage/remodeling and subsequently cancer or other DNA breakage-related disorders.

Methods

So, for the first time, we computationally and experimentally investigated the interaction of the Dexamethasone drug, alone and in combination with H2O2, ascorbic acid, iron, and copper, with a routine supercoiled plasmid DNA. In the next step, the intrinsic DNA binding constant (kd) was calculated using UV absorption titration method via Dexamethasone interaction with calf thymus DNA (ctDNA). Also, the interaction of the drug with antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase 4, and glutathione reductase was investigated by molecular docking methods.

Results

Interestingly, our in-vitro study demonstrated that dexamethasone binds to DNA by binding energy of −5.35 kcal/mol. Our study also indicated that dexamethasone/DNA interaction leads to no DNA breakage while its combination with the mineral supplies causes DNA damage/breakage. These results are consistent with our Docking study that indicated dexamethasone strongly binds to DNA and the catalytic site of glutathione peroxidase 4, the FAD-binding site of the glutathione reductase, the active site of the superoxide dismutase, and NADPH binding residues of the catalase enzyme.

Conclusions

Therefore, we hypothesize that Dexamethasone may indirectly cause DNA damage by inhibiting antioxidant defense enzymes and causing oxidative stress in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wong J, Tran LT, Lynch KA, Wood LJ (2018) Dexamethasone exacerbates cytotoxic chemotherapy induced lethargy and weight loss in female tumor free mice. Cancer Biol Ther 19(1):87–96

    Article  CAS  PubMed  Google Scholar 

  2. de Oliveira VPC, de Sousa GR, de Araujo MPT, Carneiro LC, de Andrade DML, Porto HKP, de Oliveira SM, de Moraes Filho AV (2017) Evaluation of the mutagenic potential of glucocorticoids by allium cepa. Mutagenesis 7(1):1–7

    Article  Google Scholar 

  3. Davis JD, Lin S-Y (2011) DNA damage and breast cancer. World J Clin Oncol 2(9):329

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boer DR, Canals A, Coll M (2009) DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Trans 3:399–414

    Article  Google Scholar 

  5. Toptanci BÇ, Kizil G, Kızil M (2016) DNA damage mechanisms of anti-cancer drugs. Middle East J Sci 2(1):33–49

    Article  Google Scholar 

  6. Bertoncini C, Meneghini R, Galembeck F, Calió M, Carbonel A (2016) Preferential localization of iron in the chromatin of Fe-enriched cells Is linked to DNA cleavage sites and control of carcinogenesis. J Cancer Sci Ther 8:213–215

    Article  CAS  Google Scholar 

  7. Brewer GJ (2009) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23(2):319–326

    Article  Google Scholar 

  8. Nabi-Afjadi M, Karami H, Goudarzi K, Alipourfard I, Bahreini E (2021) The effect of vitamin D, magnesium and zinc supplements on interferon signaling pathways and their relationship to control SARS-CoV-2 infection. Clin Molecular Allergy 19(1):1–10

    Article  Google Scholar 

  9. Ebrahimi K, Shir Ovand S (2022) Mohammedi AaN, Nabi-Afjadi M, Zalpoor H, Bahreini F: bisynthesis of copper nanoparticles using aqueous thymus daenensis (celak) flora and investigation of its antifungal activity. J Med Microbiol Infectious Dis 10(3):98–103

    CAS  Google Scholar 

  10. Bar-Or D, Thomas GW, Rael LT, Lau EP, Winkler JV (2001) Asp-Ala-His-Lys (DAHK) inhibits copper-induced oxidative DNA double strand breaks and telomere shortening. Biochem Biophys Res Commun 282(1):356–360

    Article  CAS  PubMed  Google Scholar 

  11. Oikawa S, Kawanishi S (1998) Distinct mechanisms of site-specific DNA damage induced by endogenous reductants in the presence of iron (III) and copper (II). Biochim et Biophys. Acta (BBA) Gene Struct Exp 1399:19–30

    Article  CAS  Google Scholar 

  12. Barbouti A, Doulias P-T, Zhu B-Z, Frei B, Galaris D (2001) Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Free Radical Biol Med 31(4):490–498

    Article  CAS  Google Scholar 

  13. Subramaniam S, Vohra I, Iyer A, Nair NK, Mittra I (2015) A paradoxical relationship between resveratrol and copper (II) with respect to degradation of DNA and RNA. F1000Research

  14. Kobayashi T, Guo LL, Nishida Y (1998) Mechanism of double-strand DNA cleavage effected by iron-bleomycin. Z Naturforsch C J Biosci 53(9–10):867–870

    Article  CAS  PubMed  Google Scholar 

  15. Ohnishi S, Murata M, Ida N, Oikawa S, Kawanishi S (2015) Oxidative DNA damage induced by metabolites of chloramphenicol, an antibiotic drug. Free Radic Res 49(9):1165–1172

    Article  CAS  PubMed  Google Scholar 

  16. Oikawa S, Yamada K, Yamashita N, Tada-Oikawa S, Kawanishi S (1999) N-acetylcysteine, a cancer chemopreventive agent, causes oxidative damage to cellular and isolated DNA. Carcinogenesis 20(8):1485–1490

    Article  CAS  PubMed  Google Scholar 

  17. Ogawa K, Hiraku Y, Oikawa S, Murata M, Sugimura Y, Kawamura J, Kawanishi S (2003) Molecular mechanisms of DNA damage induced by procarbazine in the presence of Cu(II). Mutat Res 539(1–2):145–155

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7(12):1875–1884

    Article  CAS  PubMed  Google Scholar 

  19. Hejazi II, Khanam R, Mehdi SH, Bhat AR, Rizvi MMA, Thakur SC, Athar F (2018) Antioxidative and anti-proliferative potential of Curculigo orchioides Gaertn in oxidative stress induced cytotoxicity: In vitro, ex vivo and in silico studies. Food Chem Toxicol 115:244–259

    Article  CAS  PubMed  Google Scholar 

  20. Coban B, Yildiz U (2014) DNA-binding studies and antitumor evaluation of novel water soluble organic pip and hpip analogs. Appl Biochem Biotechnol 172(1):248–262

    Article  CAS  PubMed  Google Scholar 

  21. Ul-Haq I, Ullah N, Bibi G, Kanwal S, Sheeraz Ahmad M, Mirza B (2012) Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iran J Pharm Res 11(1):241–249

    PubMed  PubMed Central  Google Scholar 

  22. Kanakis C, Nafisi S, Rajabi M, Shadaloi A, Tarantilis P, Polissiou M, Bariyanga J, Tajmir-Riahi H (2009) Structural analysis of DNA and RNA interactions with antioxidant flavonoids. J Spectrosc 23(1):29–43

    Article  CAS  Google Scholar 

  23. Marty R, N’Soukpoe-Kossi CN, Charbonneau DM, Kreplak L, Tajmir-Riahi HA (2009) Structural characterization of cationic lipid-tRNA complexes. Nucleic Acids Res 37(15):5197–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shahabadi N, Fili SM, Maghsudi M (2019) Molecular docking and spectroscopic studies on the interaction of new fifth-generation antibacterial drug ceftobiprole with calf thymus DNA. Nucleosides Nucleotides Nucleic Acids 38(10):732–751

    Article  CAS  PubMed  Google Scholar 

  25. Hall MD, Marshall TS, Kwit AD, Jenkins LMM, Dulcey AE, Madigan JP, Pluchino KM, Goldsborough AS, Brimacombe KR, Griffiths GL (2014) Inhibition of glutathione peroxidase mediates the collateral sensitivity of multidrug-resistant cells to tiopronin. J Biol Chem 289(31):21473–21489

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huff LM, Horibata S, Robey RW, Hall MD, Gottesman MM (2019) Mycoplasma infection mediates sensitivity of multidrug-resistant cell lines to Tiopronin: a cautionary tale. J Med Chem 63(3):1434–1439

    Article  Google Scholar 

  27. Mazumder MK, Choudhury S, Borah A (2019) An in silico investigation on the inhibitory potential of the constituents of Pomegranate juice on antioxidant defense mechanism: Relevance to neurodegenerative diseases. IBRO reports 6:153–159

    Article  PubMed  PubMed Central  Google Scholar 

  28. Korkmaz IN, Güller U, Kalın R, Özdemir H, Küfrevioğlu Öİ (2023) Structure‐activity relationship of methyl 4‐aminobenzoate derivatives as being drug candidate targeting glutathione related enzymes: in vitro and in silico approaches. Chem Biodiv p 202201220.

  29. Wei H, Li H, Wan S-P, Zeng Q-T, Cheng L-X, Jiang L-L, Peng Y-D (2007) Cardioprotective effects of malvidin against isoproterenol-induced myocardial infarction in rats: a mechanistic study. Med Sci Monitor: Int Med J Exp Clin Res 2017:23

    Google Scholar 

  30. Dashwood RH, Combes RD, Ashby J (1988) DNA-binding studies with 6BT and 5I: implications for DNA-binding/carcinogenicity and DNA-binding/mutagenicity correlations. Mutat Res 198(1):61–68

    Article  CAS  PubMed  Google Scholar 

  31. Shaikh SA, Ahmed SR, Jayaram B (2004) A molecular thermodynamic view of DNA-drug interactions: a case study of 25 minor-groove binders. Arch Biochem Biophys 429(1):81–99

    Article  CAS  PubMed  Google Scholar 

  32. Valipour R, Yilmaz MB, Valipour E: Study of DNA-binding activity and antibacterial effect of escitalopram oxalate, an extensively prescribed antidepressant. Drug Res

  33. Tabassum S, Chandra Sharma G, Arjmand F, Azam A (2010) DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods. Nanotechnology 21(19):195102

    Article  PubMed  Google Scholar 

  34. Firdhouse MJ, Lalitha P (2015) Binding properties of biosynthesized gold nanoparticles with calf-thymus DNA in vitro. Int J Biol Chem 9(4):188–197

    Article  CAS  Google Scholar 

  35. Zhang G, Fu P, Wang L, Hu M (2011) Molecular spectroscopic studies of farrerol interaction with calf thymus DNA. J Agric Food Chem 59(16):8944–8952

    Article  CAS  PubMed  Google Scholar 

  36. Huang S, Zhu F, Xiao Q, Liang Y, Zhou Q, Su W (2015) Thermodynamic investigation of the interaction between the [(η 6-p-cymene) Ru (benzaldehyde-N 4-phenylthiosemicarbazone) Cl] Cl anticancer drug and ctDNA: multispectroscopic and electrochemical studies. RSC Adv 5(53):42889–42902

    Article  CAS  Google Scholar 

  37. Eshkourfu R, Čobeljić B, Vujčić M, Turel I, Pevec A, Sepčić K, Zec M, Radulović S, Srdić-Radić T, Mitić D (2011) Synthesis, characterization, cytotoxic activity and DNA binding properties of the novel dinuclear cobalt (III) complex with the condensation product of 2-acetylpyridine and malonic acid dihydrazide. J Inorg Biochem 105(9):1196–1203

    Article  CAS  PubMed  Google Scholar 

  38. Paul A, Bhattacharya S (2012) Chemistry and biology of DNA-binding small molecules. Curr Sci (Bangalore) 102(2):212–231

    CAS  Google Scholar 

  39. Yu J, Chen W, Wu C, Chen H (2014) PEG-protein interaction induced contraction of NalD chains. PLoS ONE 9(5):e96616

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Mattos J, Dantas F, Caldeira-de-Araújo A, Moraes M (2004) Agarose gel electrophoresis system in the classroom: detection of DNA strand breaks through the alteration of plasmid topology. Biochem Mol Biol Educ 32(4):254–257

    Article  PubMed  Google Scholar 

  41. Moreno RG, Alipazaga MV, Gomes OF, Linares E, Medeiros MH, Coichev N (2007) DNA damage and 2’-deoxyguanosine oxidation induced by S(IV) autoxidation catalyzed by copper(II) tetraglycine complexes: synergistic effect of a second metal ion. J Inorg Biochem 101(5):866–875

    Article  CAS  PubMed  Google Scholar 

  42. Klintip R, Boonprasert R, Kolladarungkri T (2016) Development of a method for determination of dexamethasone (DEX) concentrations in human plasma by ultra performance liquid chromato-graphy/photo diode array detector (UPLC/PDA). Siriraj Med J 67(3):116–122

    Google Scholar 

  43. Song YK, Park JS, Kim JK, Kim CK (2004) HPLC determination of dexamethasone in human plasma. J Liq Chromatogr Rel Technol 27(14):2293–2306

    Article  CAS  Google Scholar 

  44. Tian J, Peehl DM, Knox SJ (2010) Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through fenton chemistry. Cancer Biother Radiopharm 25(4):439–448

    CAS  PubMed  Google Scholar 

  45. Li Y, Zheng Y, Zhang Y, Xu J, Gao G (2018) Antioxidant activity of coconut (Cocos nucifera L.) protein fractions. Molecules 23(3):1–11

    Article  Google Scholar 

  46. Flohé L, Brigelius-Flohé R (2011) Selenoproteins of the glutathione peroxidase family. In: Selenium. Springer; 167–180.

  47. Matés JM, Sánchez-Jiménez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4(4):0339–0345

    Article  Google Scholar 

  48. Ithayaraja CM (2011) Mini-review: Metabolic functions and molecular structure of glutathione reductase. Int J Pharm Sci Rev Res 9:104–115

    CAS  Google Scholar 

  49. Karplus PA, Schulz GE (1989) Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2Å resolution. J Mol Biol 210(1):163–180

    Article  CAS  PubMed  Google Scholar 

  50. Banci L, Bertini I, Cramaro F, Del Conte R, Viezzoli MS (2002) The solution structure of reduced dimeric copper zinc superoxide dismutase. The structural effects of dimerization. Eur J Biochem 269(7):1905–1915

    Article  CAS  PubMed  Google Scholar 

  51. Wright GS, Antonyuk SV, Kershaw NM, Strange RW, Samar Hasnain S (2013) Ligand binding and aggregation of pathogenic SOD1. Nat Commun 4:1758

    Article  PubMed  Google Scholar 

  52. Ko TP, Safo MK, Musayev FN, Di Salvo ML, Wang C, Wu SH, Abraham DJ (2000) Structure of human erythrocyte catalase. Acta Crystallogr D Biol Crystallogr 56(Pt 2):241–245

    Article  CAS  PubMed  Google Scholar 

  53. Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296(1):295–309

    Article  CAS  PubMed  Google Scholar 

  54. Mutsaers HA, Tofighi R (2012) Dexamethasone enhances oxidative stress-induced cell death in murine neural stem cells. Neurotox Res 22(2):127–137

    Article  CAS  PubMed  Google Scholar 

  55. Feng YL, Tang XL (2014) Effect of glucocorticoid-induced oxidative stress on the expression of Cbfa1. Chem Biol Interact 207:26–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Zonguldak Bulent Ecevit University Scientific Research Commission for supporting our study through project grant no. 2018-50737594-01.

Author information

Authors and Affiliations

Authors

Contributions

IA participates in the design and interpretation of the studies, and the review of the manuscript, CA, MNA, and HZ conducted the experiments and wrote the manuscript, and all images were drawn. IA  and MNA edited the manuscript and supervised it.

Corresponding authors

Correspondence to Ibrahim Arman or Mohsen Nabi-Afjadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. 

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, C., Arman, I., Nabi-Afjadi, M. et al. Evaluation of dexamethasone and its combination with mineral supplements on the DNA compactness/breakage and the efficiency of antioxidant defense enzymes. Toxicol. Environ. Health Sci. 15, 207–215 (2023). https://doi.org/10.1007/s13530-023-00174-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00174-9

Keywords

Navigation