Skip to main content
Log in

Age-dependent alteration of microRNAs related to brain cancer in C6 glioma cells and young and old hippocampal rats after exposure to 1,2-Diacetylbenzene

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

1,2-Diacetylbenzene (DAB) induces cognitive and motor deficits, which are the most common symptoms of cancer (e.g., glioma), and gene expression plays an important regulatory role during the progression of memory and motor deficits. We aimed to assess the expression patterns and molecular activities of miRNAs in rats exposed to DAB.

Methods

We compared miRNA expressions in the hippocampal tissues of DAB-treated young and old rats with those in treatment-naïve young or old controls as well as BV2 microglial cells and C6 cells to provide functional evidence of miRNA differences in young and old rats and to access molecular processes. miRNA expression profiles were obtained by microarray analysis and were confirmed by quantitative RT-PCR. Gene ontology, KEGG enrichment analyses, and MIENTURNET were performed on genes targeted by miRNAs.

Results

Twelve miRNAs were found to be differentially expressed (8 upregulated and 4 downregulated) in young DAB-treated rats versus non-treated young rats, while 10 miRNAs (7 upregulated and 3 downregulated) were differentially expressed in old DAB-treated rats versus non-treated old rats. Expressions of miR-200a-3p, miR-200b-3p, and miR-429 were significantly higher in young DAB-treated rats than in non-treated young rats, and those of miR-196a-5p and miR-224-5p were significantly higher in old DAB-treated rats than in non-treated old rats (p < 0.001). rno-miR-200a-3p, rno-miR-200b-3p, rno-miR-200c-3p & rno-miR-141-3p were involved in glioma-related genes (Zeb1 and 2). Furthermore, the expression levels of these miRNAs were significantly increased in C6 cells treated with DAB compared with non-treated C6 and BV2 microglial cells. In silico analyses showed that these miRNAs are associated with glioma-related pathways. Elevated miR-200a family and miR-196a expressions may play an important role in the development of glioma-induced memory and motor deficits.

Conclusions

Further work is needed to confirm whether this dose of DAB would eventually induce gliomas near the hippocampus and might manifest cognitive and motor deficits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Organization WH (2020) Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed on 20 July 2021

  2. Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621. https://doi.org/10.1016/j.cancergen.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  3. Ijzerman-Korevaar M, Snijders TJ, de Graeff A et al (2018) Prevalence of symptoms in glioma patients throughout the disease trajectory: a systematic review. J Neurooncol 140:485–496. https://doi.org/10.1007/s11060-018-03015-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gimple RC, Bhargava S, Dixit D et al (2019) Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev 33:591–609. https://doi.org/10.1101/gad.324301.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diederichs S (2010) Non-coding RNA in malignant tumors. A new world of tumor biomarkers and target structures in cancer cells. Pathologe 31(2):258–262. https://doi.org/10.1007/s00292-010-1336-8

    Article  PubMed  Google Scholar 

  6. Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004. https://doi.org/10.1038/sigtrans.2015.4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xue H, Guo X, Han X et al (2016) MicroRNA-584–3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1. Oncotarget 7:4785–4805. https://doi.org/10.18632/oncotarget.6735

    Article  PubMed  Google Scholar 

  8. Fan YH, Ye MH, Wu L et al (2015) Overexpression of miR-98 inhibits cell invasion in glioma cell lines via downregulation of IKKε. Eur Rev Med Pharmacol Sci 19:3593–3604

    PubMed  Google Scholar 

  9. Chai C, Song LJ, Yang B et al (2016) Circulating miR-199a-3p in plasma and its potential diagnostic and prognostic value in glioma. Eur Rev Med Pharmacol Sci 20:4885–4890

    CAS  PubMed  Google Scholar 

  10. Mo FF, An T, Zhang ZJ et al (2017) Jiang Tang Xiao Ke Granule Play an Anti-diabetic Role in Diabetic Mice Pancreatic Tissue by Regulating the mRNAs and MicroRNAs Associated with PI3K-Akt Signaling Pathway. Front Pharmacol 8:795. https://doi.org/10.3389/fphar.2017.00795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ben-Hamo R, Efroni S (2015) MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 6:1594–1604. https://doi.org/10.18632/oncotarget.2734

    Article  PubMed  PubMed Central  Google Scholar 

  12. Duc HN, Oh H, Kim M-S (2021) Effects of antioxidant vitamins curry consumption, and heavy metal levels on metabolic syndrome with comorbidities: a Korean community-based cross-sectional study. Antioxidants 10:808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lock EA, Zhang J, Checkoway H (2013) Solvents and Parkinson disease: a systematic review of toxicological and epidemiological evidence. Toxicol Appl Pharmacol 266:345–355. https://doi.org/10.1016/j.taap.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen HD, Oh H, Hoang NHM et al (2021) Environmental science and pollution research role of heavy metal concentrations and vitamin intake from food in depression: a national cross-sectional study (2009–2017). Environ Sci Pollut Res Int 29:1–13. https://doi.org/10.1007/s11356-021-15986-w

    Article  CAS  Google Scholar 

  15. Nguyen HD, Jo WH, Hoang NHM et al (2022) Corrigendum to “1,2-diacetylbenzene impaired hippocampal memory by activating proinflammatory cytokines and upregulating the prolactin pathway: an in vivo and in vitro study” [Int. Immunopharmacol. 108 (2022) 108901]. Int Immunopharmacol 111:109156. https://doi.org/10.1016/j.intimp.2022.109156

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen HD, Jo WH, Hoang NHM et al (2022) 1,2-Diacetylbenzene impaired hippocampal memory by activating proinflammatory cytokines and upregulating the prolactin pathway: an in vivo and in vitro study. Int Immunopharmacol 108:108901. https://doi.org/10.1016/j.intimp.2022.108901

    Article  CAS  PubMed  Google Scholar 

  17. Hoang NMH, Kim S, Nguyen HD et al (2021) Age-dependent sensitivity to the neurotoxic environmental metabolite, 1,2-Diacetylbenzene. Biomol Ther (Seoul). https://doi.org/10.4062/biomolther.2020.208

    Article  PubMed  Google Scholar 

  18. Duc Nguyen H, Hee Jo W, Hong Minh Hoang N et al (2022) Anti-inflammatory effects of B vitamins protect against tau hyperphosphorylation and cognitive impairment induced by 1,2 diacetyl benzene: an in vitro and in silico study. Int Immunopharmacol 108:108736. https://doi.org/10.1016/j.intimp.2022.108736

    Article  CAS  PubMed  Google Scholar 

  19. Gagnaire F, Ensminger A, Marignac B et al (1991) Possible involvement of 1,2-diacetylbenzene in diethylbenzene-induced neuropathy in rats. J Appl Toxicol 11:261–268. https://doi.org/10.1002/jat.2550110406

    Article  CAS  PubMed  Google Scholar 

  20. Kim M-S, Sabri MI, Miller VH et al (2001) 1, 2-diacetylbenzene, the neurotoxic metabolite of a chromogenic aromatic solvent, induces proximal axonopathy. Toxicol Appl Pharmacol 177:121–131

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen HD, Jo WH, Hoang NHM et al (2023) Risperidone ameliorated 1,2-Diacetylbenzene-induced cognitive impairments in mice via activating prolactin signaling pathways. Int Immunopharmacol 115:109726. https://doi.org/10.1016/j.intimp.2023.109726

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen HD, Jo WH, Hoang NHM et al (2022) Curcumin-attenuated TREM-1/DAP12/NLRP3/Caspase-1/IL1B, TLR4/NF-κB pathways, and tau hyperphosphorylation induced by 1,2-diacetyl benzene: an in vitro and in silico study. Neurotox Res. https://doi.org/10.1007/s12640-022-00535-1

    Article  PubMed  Google Scholar 

  23. Nguyen HD, Jo WH, Hoang NHM et al (2022) In silico identification of the potential molecular mechanisms involved in protective effects of prolactin on motor and memory deficits induced by 1,2-Diacetylbenzene in young and old rats. Neurotoxicology 93:45–59. https://doi.org/10.1016/j.neuro.2022.09.002

    Article  CAS  PubMed  Google Scholar 

  24. Kim M-S, Park HR, Chung HY et al (2011) Organic solvent metabolite, 1,2-diacetylbenzene, impairs neural progenitor cells and hippocampal neurogenesis. Chem Biol Interact 194:139–147. https://doi.org/10.1016/j.cbi.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  25. Kim M-S, Sabri MI, Miller VH et al (2001) 1,2-Diacetylbenzene, the neurotoxic metabolite of a chromogenic aromatic solvent, induces proximal axonopathy. Toxicol Appl Pharmacol 177:121–131. https://doi.org/10.1006/taap.2001.9301

    Article  CAS  PubMed  Google Scholar 

  26. Tshala-Katumbay DD, Palmer VS, Kayton RJ et al (2005) A new murine model of giant proximal axonopathy. Acta Neuropathol 109:405–410. https://doi.org/10.1007/s00401-005-0982-z

    Article  CAS  PubMed  Google Scholar 

  27. Kang SW, Kim SJ, Kim MS (2017) Oxidative stress with tau hyperphosphorylation in memory impaired 1,2-diacetylbenzene-treated mice. Toxicol Lett 279:53–59. https://doi.org/10.1016/j.toxlet.2017.07.892

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen HD (2023) Prognostic biomarker prediction for glioma induced by heavy metals and their mixtures: an in-silico study. Toxicol Appl Pharmacol 459:116356. https://doi.org/10.1016/j.taap.2022.116356

    Article  CAS  PubMed  Google Scholar 

  29. Benke G, Turner MC, Fleming S et al (2017) Occupational solvent exposure and risk of glioma in the INTEROCC study. Br J Cancer 117:1246–1254. https://doi.org/10.1038/bjc.2017.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Neta G, Stewart PA, Rajaraman P et al (2012) Occupational exposure to chlorinated solvents and risks of glioma and meningioma in adults. Occup Environ Med 69:793–801. https://doi.org/10.1136/oemed-2012-100742

    Article  CAS  PubMed  Google Scholar 

  31. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152-157. https://doi.org/10.1093/nar/gkq1027

    Article  CAS  PubMed  Google Scholar 

  32. Giakoumettis D, Kritis A, Foroglou N (2018) C6 cell line: the gold standard in glioma research. Hippokratia 22:105–112

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Filipów S, Łaczmański Ł (2019) Blood circulating miRNAs as cancer biomarkers for diagnosis and surgical treatment response. Front Genet 10:169–169. https://doi.org/10.3389/fgene.2019.00169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steinbaugh MJ, Sun LY, Bartke A et al (2012) Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am J Physiol Endocrinol Metab 303:E488–E495. https://doi.org/10.1152/ajpendo.00110.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amador-Noguez D, Dean A, Huang W et al (2007) Alterations in xenobiotic metabolism in the long-lived little mice. Aging Cell 6:453–470. https://doi.org/10.1111/j.1474-9726.2007.00300.x

    Article  CAS  PubMed  Google Scholar 

  37. Muralidhar GG, Barbolina MV (2015) The miR-200 family: versatile players in epithelial ovarian cancer. Inte J Mol Sci 16:16833–16847

    Article  CAS  Google Scholar 

  38. Wang M, Hu M, Li Z et al (2017) miR-141-3p functions as a tumor suppressor modulating activating transcription factor 5 in glioma. Biochem Biophys Res Commun 490:1260–1267. https://doi.org/10.1016/j.bbrc.2017.05.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qin Y, Chen W, Liu B et al (2017) MiR-200c Inhibits the tumor progression of glioma via targeting moesin. Theranostics 7:1663–1673. https://doi.org/10.7150/thno.17886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng L, Fu J, Ming Y et al (2018) The miR-200 family: multiple effects on gliomas. Cancer Manag Res 10:1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun X, Li Z, Chen Y (2016) The potential prognostic value of MicroRNA-429 for human gliomas. Ann Clin Lab Sci 46:44–48

    CAS  PubMed  Google Scholar 

  42. Zhou X, Wu W, Zeng A et al (2017) MicroRNA-141–3p promotes glioma cell growth and temozolomide resistance by directly targeting p53. Oncotarget 8:71080–71094. https://doi.org/10.18632/oncotarget.20528

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zang Y, Tai Y, Wan B et al (2016) miR-200a-3p promotes the proliferation of human esophageal cancer cells by post-transcriptionally regulating cytoplasmic collapsin response mediator protein-1. Int J Mol Med 38:1558–1564

    Article  CAS  PubMed  Google Scholar 

  44. Wang X, Jiang F, Song H et al (2016) MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma. Biochem Biophys Res Commun 470:620–626. https://doi.org/10.1016/j.bbrc.2016.01.095

    Article  CAS  PubMed  Google Scholar 

  45. Shi C, Yang Y, Zhang L et al (2019) MiR-200a-3p promoted the malignant behaviors of ovarian cancer cells through regulating PCDH9. OncoTargets Therapy 12:8329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang B, Li M, Wu Z et al (2015) Associations between SOX2 and miR-200b expression with the clinicopathological characteristics and prognosis of patients with glioma. Exp Ther Med 10:88–96. https://doi.org/10.3892/etm.2015.2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ning X, Shi Z, Liu X et al (2015) DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett 359:198–205. https://doi.org/10.1016/j.canlet.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  48. Zhao C, Ma ZG, Mou SL et al (2017) Targeting effect of microRNA on CD133 and its impact analysis on proliferation and invasion of glioma cells. Genet Mol Res. https://doi.org/10.4238/gmr16019281

    Article  PubMed  Google Scholar 

  49. Peng B, Hu S, Jun Q et al (2013) MicroRNA-200b targets CREB1 and suppresses cell growth in human malignant glioma. Mol Cell Biochem 379:51–58. https://doi.org/10.1007/s11010-013-1626-6

    Article  CAS  PubMed  Google Scholar 

  50. Peng B, Hu S, Qin M et al (2015) miR-200b suppresses glioma cell invasion by targeting PROM1. Zhonghua zhong liu za zhi [Chin J Oncol] 37:25–28

    CAS  PubMed  Google Scholar 

  51. Wu J, Cui H, Zhu Z et al (2016) MicroRNA-200b-3p suppresses epithelial-mesenchymal transition and inhibits tumor growth of glioma through down-regulation of ERK5. Biochem Biophys Res Commun 478:1158–1164. https://doi.org/10.1016/j.bbrc.2016.08.085

    Article  CAS  PubMed  Google Scholar 

  52. Ma T, Xue Y-X (2016) MiRNA-200b regulates RMP7-induced increases in blood-tumor barrier permeability by targeting RhoA and ROCKII. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2016.00009

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhao X, Liu Y, Zheng J et al (2017) GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1864:1605–1617. https://doi.org/10.1016/j.bbamcr.2017.06.020

    Article  CAS  Google Scholar 

  54. Qu S, Qiu O, Huang J et al (2021) Upregulation of hsa-miR-196a-5p is associated with MIR196A2 methylation and affects the malignant biological behaviors of glioma. Genomics 113:1001–1010. https://doi.org/10.1016/j.ygeno.2021.02.012

    Article  CAS  PubMed  Google Scholar 

  55. Guan Y, Chen L, Bao Y et al (2015) High miR-196a and low miR-367 cooperatively correlate with unfavorable prognosis of high-grade glioma. Int J Clin Exp Pathol 8:6576–6588

    PubMed  PubMed Central  Google Scholar 

  56. Zheng S-Q, Qi Y, Wu J et al (2019) CircPCMTD1 acts as the sponge of miR-224–5p to promote glioma progression. Front Oncol. https://doi.org/10.3389/fonc.2019.00398

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li J, Liu X, Li C et al (2019) miR-224-5p inhibits proliferation, migration, and invasion by targeting PIK3R3/AKT3 in uveal melanoma. J Cell Biochem 120:12412–12421. https://doi.org/10.1002/jcb.28507

    Article  CAS  PubMed  Google Scholar 

  58. Zeng Y, Que T, Lin J et al (2021) Oncogenic ZEB2/miR-637/HMGA1 signaling axis targeting vimentin promotes the malignant phenotype of glioma. Mol Ther-Nucleic Acids 23:769–782. https://doi.org/10.1016/j.omtn.2020.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Myung JK, Ah Choi S, Kim S-K et al (2021) The role of ZEB2 expression in pediatric and adult glioblastomas. Anticancer Res 41:175. https://doi.org/10.21873/anticanres.14763

    Article  CAS  PubMed  Google Scholar 

  60. Siebzehnrubl FA, Silver DJ, Tugertimur B et al (2013) The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med 5:1196–1212. https://doi.org/10.1002/emmm.201302827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Edwards LA, Kim S, Madany M et al (2019) ZEB1 is a transcription factor that is prognostic and predictive in diffuse gliomas. Front Neurol. https://doi.org/10.3389/fneur.2018.01199

    Article  PubMed  PubMed Central  Google Scholar 

  62. Qi S, Song Y, Peng Y et al (2012) ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS ONE 7:e38842–e38842. https://doi.org/10.1371/journal.pone.0038842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qian Z, Ren L, Wu D et al (2017) Overexpression of FoxO3a is associated with glioblastoma progression and predicts poor patient prognosis. Int J Cancer 140:2792–2804. https://doi.org/10.1002/ijc.30690

    Article  CAS  PubMed  Google Scholar 

  64. Ciechomska IA, Gielniewski B, Wojtas B et al (2020) EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide. Exp Mol Med 52:1326–1340. https://doi.org/10.1038/s12276-020-0479-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li X, Wu C, Chen N et al (2016) PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 7:33440–33450. https://doi.org/10.18632/oncotarget.7961

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wade A, Robinson AE, Engler JR et al (2013) Proteoglycans and their roles in brain cancer. FEBS J 280:2399–2417. https://doi.org/10.1111/febs.12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou W, Wahl DR (2019) Metabolic abnormalities in glioblastoma and metabolic strategies to overcome treatment resistance. Cancers (Basel) 11:1231. https://doi.org/10.3390/cancers11091231

    Article  CAS  PubMed  Google Scholar 

  68. da Fonseca CO, Linden R, Futuro D et al (2008) Ras pathway activation in gliomas: a strategic target for intranasal administration of perillyl alcohol. Arch Immunol Ther Exp 56:267–276. https://doi.org/10.1007/s00005-008-0027-0

    Article  Google Scholar 

  69. Lawn S, Krishna N, Pisklakova A et al (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 290:3814–3824. https://doi.org/10.1074/jbc.M114.599373

    Article  CAS  PubMed  Google Scholar 

  70. Hodge JM, Coghill AE, Kim Y et al (2021) Toxoplasma gondii infection and the risk of adult glioma in two prospective studies. Int J Cancer. https://doi.org/10.1002/ijc.33443

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lange F, Hörnschemeyer J, Kirschstein T (2021) Glutamatergic mechanisms in glioblastoma and tumor-associated epilepsy. Cells 10:1226. https://doi.org/10.3390/cells10051226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang T, Yang Z-y, Wang D et al (2020) The role of lysosomes in cancer development and progression. Cell Biosci 10:131. https://doi.org/10.1186/s13578-020-00489-x

    Article  PubMed  PubMed Central  Google Scholar 

  73. Masliantsev K, Karayan-Tapon L, Guichet PO (2021) Hippo signaling pathway in gliomas. Cells. https://doi.org/10.3390/cells10010184

    Article  PubMed  PubMed Central  Google Scholar 

  74. Buser DP, Ritz M-F, Moes S et al (2019) Quantitative proteomics reveals reduction of endocytic machinery components in gliomas. EBioMedicine 46:32–41. https://doi.org/10.1016/j.ebiom.2019.07.039

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim MS, Hashemi SB, Spencer PS et al (2002) Amino acid and protein targets of 1,2-diacetylbenzene, a potent aromatic gamma-diketone that induces proximal neurofilamentous axonopathy. Toxicol Appl Pharmacol 183:55–65. https://doi.org/10.1006/taap.2002.9456

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen HD, Oh H, Kim M-S (2022) Mixtures modeling identifies vitamin B1 and B3 intakes associated with depression. J Affect Disord 301:68–80. https://doi.org/10.1016/j.jad.2021.12.133

    Article  CAS  PubMed  Google Scholar 

  77. Yuan T, Ying J, Zuo Z et al (2020) Structural plasticity of the bilateral hippocampus in glioma patients. Aging 12:10259–10274. https://doi.org/10.18632/aging.103212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mughal AA, Zhang L, Fayzullin A et al (2018) Patterns of invasive growth in malignant gliomas-the hippocampus emerges as an invasion-spared brain region. Neoplasia 20:643–656. https://doi.org/10.1016/j.neo.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen HD, Hong NMH et al (2022) Associations among the TREM-1 pathway, tau hyperphosphorylation, prolactin expression, and metformin in diabetes mice. NeuroImmunoModulation. https://doi.org/10.1159/000521013

    Article  Google Scholar 

  80. An T, Fan T, Zhang XQ et al (2019) Comparison of alterations in miRNA expression in matched tissue and blood samples during spinal cord glioma progression. Sci Rep 9:9169. https://doi.org/10.1038/s41598-019-42364-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Licursi V, Conte F, Fiscon G et al (2019) MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics 20:545. https://doi.org/10.1186/s12859-019-3105-x

    Article  PubMed  PubMed Central  Google Scholar 

  82. Thalheimer W, Cook S (2002) How to calculate effect sizes from published research: a simplified methodology. Work Learn Res 1:1–9

    Google Scholar 

Download references

Acknowledgements

This study supported by National Research Foundation of Korea (NRF) (Grant no. 2022R1A2C1005643).

Author information

Authors and Affiliations

Authors

Contributions

HDN: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing the original draft, Writing-review & editing, and Visualization. MSK: Supervision, Project administration. HYC: Visualization. BPY: Visualization. NHMH: Visualization. WHJ: Visualization.

Corresponding author

Correspondence to Min-Sun Kim.

Ethics declarations

Conflict of interest

Hai Duc Nguyen, Won Hee Jo, Ngoc Hong Minh Hoang, Byung Pal Yu, Hae Young Chung, Min‑Sun Kim declare that we have no conflict of interest.

Ethical approval

The rules for animal care set by the Pusan National University Animal Care Committee (PNU-2019-2403) were followed when the experiments were conducted.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.D., Jo, W.H., Hoang, N.H.M. et al. Age-dependent alteration of microRNAs related to brain cancer in C6 glioma cells and young and old hippocampal rats after exposure to 1,2-Diacetylbenzene. Toxicol. Environ. Health Sci. 15, 181–197 (2023). https://doi.org/10.1007/s13530-023-00171-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00171-y

Keywords

Navigation