Skip to main content

Advertisement

Log in

MicroRNA-200b targets CREB1 and suppresses cell growth in human malignant glioma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs can coordinately repress multiple target genes and interfere with the biological functions of the cell, such as proliferation and apoptosis. In the present study, we report that miR-200b was downregulated in malignant glioma cell lines and specimens. Overexpression of miR-200b suppressed the proliferation and colony formation of glioma cells. An oncogene encoding cAMP responsive element-binding protein 1 (CREB1), which has been shown to be an important transcription factor involved in the proliferation, survival, and metastasis of tumor cells, was here confirmed as a direct target gene of miR-200b. CREB1 was also found to be present at a high level in human glioma tissues. This was inversely correlated with miR-200b expression. Ectopic expression of CREB1 attenuated the growth suppressive phenotypes of glioma cells caused by miR-200b. These results indicate that miR-200b targets the CREB1 gene and suppresses glioma cell growth, suggesting that miR-200b shows tumor-suppressive activity in human malignant glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67:279–283. doi:10.1001/archneurol.2010.5

    Article  PubMed  Google Scholar 

  2. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263. doi:10.1038/nrm2868

    Article  PubMed  CAS  Google Scholar 

  3. Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300:10–19. doi:10.1016/j.canlet.2010.09.019

    Article  PubMed  CAS  Google Scholar 

  4. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  5. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261. doi:10.1073/pnas.0510565103

    Article  PubMed  CAS  Google Scholar 

  6. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866. doi:10.1038/nrc1997

    Article  PubMed  CAS  Google Scholar 

  7. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353:1768–1771. doi:10.1056/NEJMp058190

    Article  PubMed  CAS  Google Scholar 

  8. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707. doi:10.1158/0008-5472.CAN-07-1936

    Article  PubMed  CAS  Google Scholar 

  9. Elson-Schwab I, Lorentzen A, Marshall CJ (2010) MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One 5. doi: 10.1371/journal.pone.0013176

  10. Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, Calin G, Wang H, Siefker-Radtke A, McConkey D, Bar-Eli M, Dinney C (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15:5060–5072. doi:10.1158/1078-0432

    Article  PubMed  CAS  Google Scholar 

  11. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914. doi:10.1074/jbc.C800074200

    Article  PubMed  CAS  Google Scholar 

  12. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589. doi:10.1038/embor.2008.74

    Article  PubMed  CAS  Google Scholar 

  13. Leskela S, Leandro-Garcia LJ, Mendiola M, Barriuso J, Inglada-Perez L, Munoz I, Martinez-Delgado B, Redondo A, de Santiago J, Robledo M, Hardisson D, Rodriguez-Antona C (2011) The miR-200 family controls beta-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr Relat Cancer 18:85–95. doi:10.1677/ERC-10-0148

    Article  PubMed  CAS  Google Scholar 

  14. Xia W, Li J, Chen L, Huang B, Li S, Yang G, Ding H, Wang F, Liu N, Zhao Q, Fang T, Song T, Wang T, Shao N (2010) MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells. Mol Cell Biochem 344:261–266. doi:10.1007/s11010-010-0550-2

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102:4459–4464. doi:10.1073/pnas.0501076102

    Article  PubMed  CAS  Google Scholar 

  16. Boni V, Bitarte N, Cristobal I, Zarate R, Rodriguez J, Maiello E, Garcia-Foncillas J, Bandres E (2010) miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol Cancer Ther 9:2265–2275. doi:10.1158/1535-7163.MCT-10-0061

    Article  PubMed  CAS  Google Scholar 

  17. Zhu W, Shan X, Wang T, Shu Y, Liu P (2010) miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 127:2520–2529. doi:10.1002/ijc.25260

    Article  PubMed  CAS  Google Scholar 

  18. Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75:1374–1379. doi:10.1124/mol.108.054163

    Article  PubMed  CAS  Google Scholar 

  19. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907. doi:10.1101/gad.1640608

    Article  PubMed  CAS  Google Scholar 

  20. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601. doi:10.1038/ncb1722

    Article  PubMed  CAS  Google Scholar 

  21. Feng B, Wang R, Chen LB (2012) Review of miR-200b and cancer chemosensitivity. Biomed Pharmacother 66:397–402. doi:10.1016/j.biopha.2012.06.002

    Article  PubMed  CAS  Google Scholar 

  22. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861. doi:10.1146/annurev.biochem.68.1.821

    Article  PubMed  CAS  Google Scholar 

  23. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609. doi:10.1038/35085068

    Article  PubMed  CAS  Google Scholar 

  24. Pigazzi M, Ricotti E, Germano G, Faggian D, Arico M, Basso G (2007) cAMP response element binding protein (CREB) overexpression CREB has been described as critical for leukemia progression. Haematologica 92:1435–1437. doi:10.3324/haematol.11122

    Article  PubMed  CAS  Google Scholar 

  25. Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, Rao NP, Landaw EM, Sakamoto KM (2005) The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell 7:351–362. doi:10.1016/j.ccr.2005.02.018

    Article  PubMed  CAS  Google Scholar 

  26. Lee JA, Kim H, Lee YS, Kaang BK (2003) Overexpression and RNA interference of Ap-cyclic AMP-response element binding protein-2, a repressor of long-term facilitation, in Aplysia kurodai sensory-to-motor synapses. Neurosci Lett 337:9–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Basilic Special Financial Support of Affiliated Cancer Hospital Guangzhou Medical University (2010-yz-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Peng.

Additional information

Biao Peng and Su Hu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Hu, S., Jun, Q. et al. MicroRNA-200b targets CREB1 and suppresses cell growth in human malignant glioma. Mol Cell Biochem 379, 51–58 (2013). https://doi.org/10.1007/s11010-013-1626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1626-6

Keywords

Navigation