Skip to main content
Log in

The effects of silver and arsenic on antioxidant system in Lemna paucicostata: Different effects on glutathione system

  • Original article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Ag+ (AgNO3) and As3+ (As2O3) exposures resulted in dose-dependent decreases in the growth rate of Lemna paucicostata with IC50 values of 0.101±0.004 mg/mL and 0.753±0.127 mg/mL, respectively. Both Ag+ and As3+ caused dose-dependent increases in lipid peroxidation, a key oxidative damage marker. Additionally, Ag+ and As3+ caused increases in some components of antioxidant system, namely, ascorbate content and peroxidase activities such as ascorbate peroxidase, glutathione peroxidase, and guaiacol peroxidase. However, notable differences between Ag+ and As3+ were found in their effects on the glutathione (GSH) system. Ag+ caused significant decreases in the GSH content and activities of glutamate cysteine ligase (GCL) and glutathione reductase (GR), the enzymes involved in the GSH synthesis and redox recycling, respectively. In contrast, As3+ caused increases in the GSH content and GCL activity. Our results suggest that the Ag+-induced decrease in GSH content accompanied by the decreases in its synthesis and redox recycling is a critical component that further predisposes L. paucicostata to Ag+ toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volland, S. et al. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 171, 154–163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO. Silver and silver compounds: Environmental aspects, http://www.who.int/ipcs/publications/cicad/en/cicad44.pdf (2002).

  3. Choi, O. et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42, 3066–3074 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Singh, A. P., Goel, R. K. & Kaur, T. Mechanisms pertaining to arsenic toxicity. Toxicol. Int. 18, 87–93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sharma, S. S. & Dietz, K. J. The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Sci. 14, 43–50 (2009).

    Article  CAS  Google Scholar 

  6. Arakawa, H., Neault, J. F. & Tajmir-Riahi, H. A. Silver (I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys. J. 81, 1580–1587 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. http://dx.doi.org/10.1155/2012/217037 (2012).

    Google Scholar 

  8. Valavanidis, A., Vlahogianni, T., Dassenakis, M. & Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64, 178–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Eaton, P., Byers, H. L., Leeds, N., Ward, M. A. & Shattock, M. J. Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J. Biol. Chem. 277, 9806–9811 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Shiu, C. T. & Lee, T. M. Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. J. Exp. Bot. 56, 2851–2865 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Naumann, B., Eberius, M. & Appenroth, K. J. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J. Plant Physiol. 164, 1656–1664 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Razinger, J. et al. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure. Environ. Sci. Pollut. Res. Int. 14, 194–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. John, R., Ahmad, P., Gadgil, K. & Sharma, S. Antioxidative response of Lemna polyrrhiza L. to cadmium stress. J. Environ. Biol. 28, 583–589 (2007).

    CAS  PubMed  Google Scholar 

  14. Park, A., Kim, Y. J., Choi, E. M., Brown, M. T. & Han, T. A novel bioassay using root re-growth in Lemna. Aquat. Toxicol. 140-141, 415–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Park, H. J. et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 43, 1027–1032 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Flora, S. J. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 51, 257–281 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Shigeoka, S. et al. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53, 1305–1319 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, G. X. & Asada, K. Hydroxyurea and p-aminophenol are the suicide inhibitors of ascorbate peroxidase. J. Biol. Chem. 265, 2775–2781 (1990).

    CAS  PubMed  Google Scholar 

  19. Itube-Ormaetxe, I., WEscuredo, P. R., Arrese-Igor, C. & Becana, M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116, 173–181 (1998).

    Article  Google Scholar 

  20. Morita, S., Kaminaka, H., Masumura, T. & Tanaka, K. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant Cell Physiol. 40, 417–422 (1999).

    Article  CAS  Google Scholar 

  21. Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25, 279–283 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Holt, K. B. & Bard, A. J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44, 13214–13223 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, W. & Ballatori, N. Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol. Rev. 50, 335–356 (1998).

    CAS  PubMed  Google Scholar 

  24. Kitchin, K. T. & Wallace, K. Dissociation of arsenitepeptide complexes: triphasic nature, rate constants, half-lives, and biological importance. J. Biochem. Mol. Toxicol. 20, 48–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kumar, S., Kasturia, N., Sharma, A., Datt, M. & Bachhawat, A. K. Redox-dependent stability of the gammaglutamylcysteine synthetase enzyme of Escherichia coli: a novel means of redox regulation. Biochem. J. 449, 783–794 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Gill, S. S. et al. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Davies, M. J. The oxidative environment and protein damage. Biochim. Biophys. Acta 1703, 93–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Uchida, K. & Kawakishi, S. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2: selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem. 269, 2405–2410 (1994).

    CAS  PubMed  Google Scholar 

  29. Kurahashi, T., Miyazaki, A., Suwan, S. & Isobe, M. Extensive investigations on oxidized amino acid residues in H2O2-treated Cu,Zn-SOD protein with LCESI-Q-TOF-MS, MS/MS for the determination of the copper-binding site. J. Am. Chem. Soc. 123, 9268–9278 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Sewelam, N., Kazan, K. & Schenk, P. M. Global plant stress signaling: reactive oxygen species at the crossroad. Front. Plant Sci. 7, doi:10.3389/fpls.2016.00187 (2016).

  31. MacFarlane, G. R. & Burchett, M. D. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh. Mar. Pollut. Bull. 42, 233–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, F. J., Ma, J. F., Meharg, A. A. & McGrath, S. P. Arsenic uptake and metabolism in plants. New Phytol. 181, 777–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Schmoger, M. E., Oven, M. & Grill, E. Detoxification of arsenic by phytochelatins in plants. Plant Physiol. 122, 793–801 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erofeeva, E. A. Dependence of guaiacol peroxidase activity and lipid peroxidation rate in drooping birch (Betula pendula Roth) and tillet (Tilia cordata Mill) leaf on motor traffic pollution intensity. Dose Response 13, doi:10.1177/1559325815588510 (2015).

  35. Steinberg, R. A. Mineral requirements of Lemna minor. Plant Physiol. 21, 42–48 (1946).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, J. S., Brown, M. T. & Han, T. Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquat. Toxicol. 106-107, 182–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).

    Article  CAS  PubMed  Google Scholar 

  38. Cereser, C. et al. Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J. Chromatogr. B Biomed. Sci. Appl. 752, 123–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, S. et al. The antioxidant response of Lemna paucicostata upon phenol exposure. Toxicol. Environ. Health Sci. 7, 73–81 (2016).

    Article  Google Scholar 

  40. Nakano, K. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880 (1981).

    CAS  Google Scholar 

  41. Seelig, G. F. & Meister, A. Gamma-glutamylcysteine synthetase from erythrocytes. Anal. Biochem. 141, 510–514 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Paglia, D. E. & Valentine, W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169 (1967).

    CAS  PubMed  Google Scholar 

  43. Cohen, M. B. & Duvel, D. L. Characterization of the inhibition of glutathione reductase and the recovery of enzyme activity in exponentially growing murine leukemia (L1210) cells treated with 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochem. Pharmacol. 37, 3317–3320 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Chance, B. & Maehly, A. C. Assays of catalase and peroxidases. Methods Enzymol. 2, 764–775 (1955).

    Article  Google Scholar 

  45. McCord, J. M. & Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    CAS  PubMed  Google Scholar 

  46. Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Mi Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Kim, H., Kim, S. et al. The effects of silver and arsenic on antioxidant system in Lemna paucicostata: Different effects on glutathione system. Toxicol. Environ. Health Sci. 8, 332–340 (2016). https://doi.org/10.1007/s13530-016-0294-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0294-9

Keywords

Navigation