Skip to main content
Log in

Ethylene glycol induced renal toxicity in female Wistar rats

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

The calcium oxalate nephrolithiasis due to ethylene glycol treatment has long been observed in male species but the prevalence of calcium oxalate nephrolithiasis in female species due to ethylene glycol has been still a subject of controversy. Ethylene glycol was administered in drinking water at three different doses (0.4%, 0.75% and 1.0%, v/v) for 28 days in female Wistar rats. Ethylene glycol treatment caused significant decrease in body weight and corresponding increase in relative organ weight with significant hypercalciuria, hyperoxaluria and proteinuria as well as increased retention of calcium, oxalate, phosphate and total protein in kidney in a dose — and time — dependent manner. However, calcium level was significantly reduced in the serum while an increase in total protein and phosphate level in serum was observed. Furthermore, there was a significant reduction in magnesium level in urine, serum and kidney due to ethylene glycol. The effects were also confirmed in histopathological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lockely, D. J., Howes, D. & Williams, F. M. Percutaneous penetration and metabolism of 2-ethoxy ethanol. Toxicol. App. Pharmacol. 180, 74–82 (2002).

    Article  Google Scholar 

  2. Clay, K. L. & Murphy, R. C. On the metabolic acidosis of ethylene glycol intoxication. Toxicol. Appl. Pharmacol. 39, 39–49 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Tsai, C. H. et al. A traditional Chinese herbal antilithic formula, Wilingsan, effectively prevents the renal deposition of calcium oxalate crystal in ethylene glycolfed rats. Urol. Res. 36, 17–24 (2008).

    Article  PubMed  Google Scholar 

  4. Khan, S. R. Animal models of kidney stone formation: an analysis. World J. Urol. 15, 236–243 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Karadi, R. V., Gadge, N. B., Alagawadi, K. R. & Savadi, R. V. Effect of Moringa oleifera Lam. root-wood on ethylene glycol induced urolithiasis in rats. J. Ethnopharmacol. 105, 306–311 (2006).

    Article  PubMed  Google Scholar 

  6. Soundararajan, P., Mahesh, R., Ramesh, T. & Begum, V. H. Effect of Aerva lanata on calcium oxalate urolithiasis in rats. Ind. J. Exp. Biol. 44, 981–986 (2006).

    CAS  Google Scholar 

  7. Selvam, R., Kalaiselvi, P., Govindaraj, A., Murugan, V. M. & Satishkumar, A. S. Effect of Aerva lanata leaf extract and Vediuppu chunnam on the urinary risk factors of calcium oxalate urolithiasis during experimental hyperoxaluria. Pharmacol. Res. 43, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Finlayson, B. Calcium stones: some physical and clinical aspects. In: David, D. S. (ed) Calcium metabolism in renal failure and nephrolithiasis. Wiley, New York, 337–382 (1977).

    Google Scholar 

  9. Khan, S. R. & Glenton, P. A. Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J. Urol. 153, 811–817 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Ringold, S., Tiffany, J. G. & Glass, R. M. Kidney stones. J. Am. Med. Assoc. 293, 1158–1162 (2005).

    Article  CAS  Google Scholar 

  11. Parmar, R. K., Kachchi, N. R., Tirgar, P. R., Desai, T. R. & Bhalodiya, P. N. Preclinical evaluation of antiurolithiatic activity of Swertia chirata stems. Int. Res. J. Pharm. 8, 198–202 (2012).

    Article  Google Scholar 

  12. Wientarsih, I., Widyastuti, R. Prasetyo, B. F. & Aldobrata, A. The antilithiasis activity of Avocado leaf ethanol extract (Persea americana Mill) in white Male Rats. Hayati J. Biosci. 19, 49–52 (2012).

    Article  Google Scholar 

  13. Moore, K. L. & Dalley, A. F. Structure of the penis. In: Clinical Oriented Anatomy. Lippincot Williams and Williams; a Woller Klumner Corporation, Philadelphia, USA, 287–299 (1999).

    Google Scholar 

  14. Khan, S. R. & Glenton, P. A. Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J. Urol. 153, 811–817 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, H. S., Ma, M. C., Chen, C. F. & Chen, J. Lowvitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am. J. Physiol. Renal Physiol. 296, 34–45 (2009).

    Article  Google Scholar 

  16. Zerwekh, J. E. et al. Modulation by calcium of the inhibitor activity of naturally occurring urinary inhibitors. Kid. Int. 33, 1005–1008 (1988).

    Article  CAS  Google Scholar 

  17. Desmars, J. F. & Tawashi, R. Dissolution and growth of calcium oxalate monohydrate. I. Effect of magnesium and pH. Biochim. Biophys. Acta. 313, 256–267 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Scalley, R. D., Ferguson, D. R., Piccaro, J. C., Smart, M. L. & Archie, T. E. Treatment of ethylene glycol poisoning. Am. Fam. Physician 66, 807–812 (2002).

    PubMed  Google Scholar 

  19. Betanabhatla, K. S., Christina, A. J. M., Sundar B. S., Selvakumar, S. & Saravanan, K. S. Antilithiatic activity of Hibiscus sabdariffa Linn. on ethylene glycol-induced lithiasis in rats. Nat. Product Radiance 8, 43–47 (2009).

    Google Scholar 

  20. Divakar, K., Pawar, A. T., Chandrasekhar, S. B., Dighe, S. B. & Divakar, G. Protective effect of the hydroalcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food Chem. Toxicol. 48, 1013–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Reungjui, S. et al. Magnesium status of patients with renal stones and its effect on urinary citrate excretion. British J. Urol. Int. 90, 635–639 (2002).

    Article  CAS  Google Scholar 

  22. Gyawali, P. R., Joshi, B. R. & Gurung, C. K. Correlation of calcium, phosphorus, uric acid and magnesium Level in serum and 24 hours urine of patients with urolithiasis. Kathmandu Univ. Med. J. 34, 54–56 (2011).

    Google Scholar 

  23. Yim, T. K., Wu, W. K., Pak, W. F. & Ko, M. Hepatoprotective action of an oleanolic acid enriched extract of Ligustrum lucidum fruits is mediated through an enhancement on hepatic glutathione regeneration capacity in mice. Phytotherapy Res. 15, 589–592 (2001).

    Article  CAS  Google Scholar 

  24. Selvam, R. & Kalaiselvi, P. Oxalate binding proteins in calcium oxalate nephrolithiasis. Urol. Res. 31, 242–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bouanani, S., Henchiri, C., Migianu-Griffoni, E., Aouf, N. & Lecouvey, M. Pharmacological and toxicological effects of Paronychia argentea in experimental calcium oxalate nephrolithiasis in rats. J. Ethnopharmacol. 129, 38–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Khan, S. R. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol. Res. 33, 349–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kalaiselvi, P. & Selvam, R. Effect of experimental hyperoxaluria on renal calcium oxalate monohydrate binding proteins in the rat. British J. Urol. Int. 87, 110–116 (2001).

    Article  CAS  Google Scholar 

  28. Ballentine, R. & Burford, D. D. Methods in enzymology. Academic Press, New York, USA, 1002 (1957).

    Google Scholar 

  29. Hodgkinson, A. Determination of oxalic acid in biological material. Clin. Chem. 16, 547–557 (1970).

    CAS  Google Scholar 

  30. Fiske, C. H. & Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–381 (1925).

    CAS  Google Scholar 

  31. Cohen, S. A. & Daza, I. E. Calmagite method for determination of serum magnesium modified. Clin. Chem. 26, 783 (1980).

    CAS  PubMed  Google Scholar 

  32. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with folin-phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarmistha Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Verma, R.J. Ethylene glycol induced renal toxicity in female Wistar rats. Toxicol. Environ. Health Sci. 5, 207–214 (2013). https://doi.org/10.1007/s13530-013-0180-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-013-0180-7

Keywords

Navigation