Skip to main content

Advertisement

Log in

The contribution of systems analysis to training students in cognitive interdisciplinary skills in environmental science education

  • Published:
Journal of Environmental Studies and Sciences Aims and scope Submit manuscript

Abstract

Professionals in the environmental domain require cognitive interdisciplinary skills to be able to develop sustainable solutions to environmental problems. We demonstrate that education in environmental systems analysis allows for the development of these skills. We identify three components of cognitive interdisciplinary skills: (1) the ability to understand environmental issues in a holistic way, taking into account the interplay of social and biophysical dynamics; (2) the ability to connect both the analysis of environmental problems and the devising of solutions with relevant disciplinary knowledge and methodologies; and (3) the ability to reflect on the role of scientific research in solving societal problems. Environmental systems analysis provides tools, methods, and models to assist in framing complex environmental issues in a holistic way and facilitates the integration of disciplines. Systems analysis also supports reflection by making students aware that a system always represents a simplified model and a particular perspective. Through the analysis of a collection of bachelor of science students’ “reflection papers”, we identify two major challenges in teaching these cognitive skills: (1) to train students to not just follow a systematic approach but acquire a systemic view and (2) to train students to be reflexive about systems analysis and the role of science. We recommend that training in cognitive skills starts early in a study program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahlroth S, Nilsson M, Finnveden G, Hjelm O, Hochschorner E (2011) Weighting and valuation in selected environmental systems analysis tools—suggestions for further developments. J Clean Prod 19(2–3):145–156. doi:10.1016/j.jclepro.2010.04.016

    Article  Google Scholar 

  • Amann M, Cofala J, Heyes C, Klimontz Z, Mechler R, Posch MWS (2004) The RAINS model. Documentation of the model approach prepared for the RAINS peer review 2004

  • Banathy BH (1988) Systems inquiry in education. Systemic Practice and Action Research 1(2):193–212. doi:10.1007/bf01059858

    Google Scholar 

  • Bawden R (2005) Systemic development at Hawkesbury: some personal lessons from experience. Syst Res Behav Sci 22(2):151–164. doi:10.1002/sres.682

    Article  Google Scholar 

  • Bawden RJ, Packham RG (1998) Systemic praxis in the education of the agricultural systems practitioner. Syst Res Behav Sci 15(5):403–412. doi:10.1002/(sici)1099-1743(1998090)15:5<403::aid-sres267>3.0.co;2-l

    Article  Google Scholar 

  • Benammar K (2005) Reflectie als drijfveer van het leerproces. Onderzoek van Onderwijs 34(15):14–17

    Google Scholar 

  • Boix Mansilla V, Caviola H (2010) Implementing quality ID education: cognitive, didactic and institutional consideration. Paper presented at the TD Conference 2010; Implementation in Inter- and Transdisciplinary Research, Practice and Teaching. Geneva, 15–17 September 2010

  • Boix Mansilla V, Dawes Duraisingh E, Wolfe CR, Haynes C (2009) Targeted assessment rubric: an empirically grounded rubric for interdisciplinary writing. J High Educ 80(3):334–353

    Article  Google Scholar 

  • Boix Mansilla V, Duraising ED (2007) Targeted assessment of students’ interdisciplinary work: an empirically grounded framework proposed. J High Educ 78(2):215–237

    Article  Google Scholar 

  • Brand R, Karvonen A (2007) The ecosystem of expertise: complementary knowledges for sustainable development. Sustainability: Science, Practice & Policy 3(1):21–31

    Google Scholar 

  • De Kraker J, Lansu A, Van Dam-Mieras R (2007) Competences and competence-based learning for sustainable development. In: De Kraker J, Lansu A, Van Dam-Mieras R (eds) Crossing boundaries; innovative learning for sustainable development in higher education, vol 2. Higher education for sustainability. VAS: Frankfurt am Main, p 304

  • Dyball R, Brown VA, Keen M (2007) Towards sustainability: five strands of social learning. In: Wals AEJ (ed) Social learning towards a sustainable world. Wageningen Academic Publishers, Wageningen, pp 181–194

  • Fortuin KPJ, Bush SR (2010) Educating students to cross boundaries between disciplines and cultures and between theory and practice. Int J Sustain High Educ 11(1):19–35. doi:10.1108/14676371011010020

    Article  Google Scholar 

  • Fortuin KPJ, van Koppen CSA, Leemans R (2011) The value of conceptual models in coping with complexity and interdisciplinarity in environmental sciences education. BioScience 61(10):802–814. doi:10.1525/bio.2011.61.10.10

    Article  Google Scholar 

  • Grant WE (1998) Ecology and natural resource management: reflections from a systems perspective. Ecol Model 108(1–3):67–76. doi:10.1016/S0304-3800(98)00019-2

    Article  Google Scholar 

  • Hordijk L (1991) Milieu gemodelleerd: de rol van systeemanalyse in de milieukunde. Inaugurele rede bij aanvaarding van het ambt van bijzonder hoogleraar in de Millieusysteemanalyse. Landbouwuniversiteit, Wageningen

    Google Scholar 

  • Ison R (2008a) Methodological challenges of trans-disciplinary research: some systemic reflections. Natures Sciences Sociétés 16(3):241–251. doi:10.1051/nss:2008052

    Article  Google Scholar 

  • Ison RL (2008b) Systems thinking and practice for action research. In: Reason PW, Bradbury H (eds) Handbook of action research participative inquiry and practice. 2nd edition. Sage, London, UK, pp 139–158

    Google Scholar 

  • Jacobson SK, Robinson JG (1990) Training the new conservationist—cross-disciplinary education in the 1990s. Environ Conserv 17(4):319–327. doi:10.1017/S0376892900032768

    Article  Google Scholar 

  • Jansen K (2009) Implicit sociology, interdisciplinarity and systems theories in agricultural science. Sociol Rural 49(2):173–188. doi:10.1111/j.1467-9523.2009.00486.x

    Article  Google Scholar 

  • Jantsch E (1972) Inter- and transdisciplinary university: a systems approach to education and innovation. High Educ 1(1):7–37. doi:10.1007/BF01956879

    Article  Google Scholar 

  • Maniates MF, Whissel JC (2000) Environmental studies: the sky is not falling. BioScience 50(6):509–517. doi:10.1641/0006-3568(2000)050[0509:ESTSIN]2.0.CO;2

    Article  Google Scholar 

  • Martens P (2006) Sustainability: science or fiction? Sustainability: Science, Practice, & Policy 2(1):36–41

    Google Scholar 

  • Newing H (2010) Interdisciplinary training in environmental conservation: definitions, progress and future directions. Environ Conserv 37(4):410–418. doi:10.1017/S0376892910000743

    Article  Google Scholar 

  • Olsson MO (2004) Schools of system thinking—development trends in systems methodology. In: Olsson M-O, Sjöstedt G (eds) Systems approaches and their application; examples from Sweden. Kluwer, Dordrecht, pp 31–74

    Google Scholar 

  • Olsson MO, Sjöstedt G (2004) Systems and systems theory. In: Olsson MO, Sjöstedt G (eds) Systems approaches and their application; examples from Sweden. Kluwer, Dordrecht, pp 3–29

    Google Scholar 

  • Pohl C, Hirsch Hadorn G (2008) Methodological challenges of transdisciplinary research. Natures Sciences Sociétés 16(2):111–121. doi:10.1051/nss:2008035

    Article  Google Scholar 

  • Quade ES, Miser HJ (1997) The context, nature, and use of systems analysis. In: Miser HJ, Quade ES (eds) Handbook of systems analysis—overview of uses, procedures, applications, and practices, vol 1, Wiley. Chichester, New York, pp 1–32

    Google Scholar 

  • Rieckmann M (2012) Future-oriented higher education: Which key competencies should be fostered through university teaching and learning? (special issue: university learning). Futures 44(2):127–135. doi:10.1016/j.futures.2011.09.005

    Article  Google Scholar 

  • Scholz RW, Lang DJ, Wiek A, Walter AI, Stauffacher M (2006) Transdisciplinary case studies as a means of sustainability learning; historical framework and theory. Int J Sustain High Educ 7(3):226–251. doi:10.1108/14676370610677829

    Article  Google Scholar 

  • Spelt EJH, Biemans HJA, Tobi H, Luning PA, Mulder M (2009) Teaching and learning in interdisciplinary higher education: a systematic review. Educ Psychol Rev 21(4):365–378. doi:10.1007/s10648-009-9113-z

    Article  Google Scholar 

  • Tuinstra W, Bindabran P (2002) Voorbeelden van systeembenaderingen in Wageningen: een review studie. WUR-rapport, Wageningen UR, Wageningen

    Google Scholar 

  • Tuinstra W, Hordijk L, Amann M (1999) Using models in international negotiations: the case of acidification in Europe. Environment 41(9):32–42

    Google Scholar 

  • Tuinstra W, Hordijk L, Kroeze C (2006) Moving boundaries in transboundary air pollution co-production of science and policy under the convention on long range transboundary air pollution. Global Environmental Change 16:349–363

    Google Scholar 

  • Van der Lecq R, Scager K, De Graaff R, Nab J, Lie O, Schreel L (2006) Interdisciplinair leren denken. Onderzoek van Onderwijs 35:60–66

    Google Scholar 

  • Vincent S, Focht W (2009) US higher education environmental program managers’ perspectives on curriculum design and core competencies; Implications for sustainability as a guiding framework. Int J Sustain High Educ 10(2):164–168. doi:10.1108/14676370910945963

    Article  Google Scholar 

  • Vincent S, Focht W (2011) Interdisciplinary environmental education: elements of field identity and curriculum design. J Environ Stud Sci 1(1):14–35. doi:10.1007/s13412-011-0007-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. J. (Karen) Fortuin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortuin, K.(., van Koppen, C.(. & Kroeze, C.(. The contribution of systems analysis to training students in cognitive interdisciplinary skills in environmental science education. J Environ Stud Sci 3, 139–152 (2013). https://doi.org/10.1007/s13412-013-0106-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13412-013-0106-3

Keywords

Navigation