Skip to main content

Advertisement

Log in

The influence of CDKAL1 (rs7754840) gene polymorphism on susceptibility to gestational diabetes mellitus in pregnant women: a systematic review and meta-analysis

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Objective

Gene polymorphisms CDKAL1 (rs7754840) have been related to type 2 diabetes mellitus, which may partially define the common genetic background with gestational diabetes mellitus (GDM). The aim of this study is to investigate the association between CDKAL1 polymorphism and susceptibility to GDM.

Methods

In this study and meta-analysis, we conducted a systematic search in electronic databases such as PubMed, Web of Science, Scopus, Cochrane, EMBASE, and Google scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the association between CDKAL1 (rs7754840) polymorphisms and susceptibility to GDM in four genetic models. Statistical analysis was performed by Comprehensive Meta-Analysis (CMA) v3.7z software.

Results

A total of 13,307 participants from 11 original study were included in this study. We identified a significant relationship between the CDKAL1 (rs7754840) gene polymorphism and GDM in the study population through allelic models (C vs. G: OR = 1.29, 95% CI = 1.16–1.44, p = 0.00), homozygous genetic models (CC vs. GC: OR = 1.50, 95% CI = 1.28–1.75, p = 0.00), recessive models (CC vs. GG + GC: OR = 0.67, 95% CI = 0.57–0.79, p = 0.00), and dominant genetic models (CC + GC vs. GG: OR = 1.35, 95% CI = 1.17–1.56, p = 0.00). On the contrary, there is no significant association between the CDKAL1 gene polymorphism and susceptibility to GDM in heterozygous models (GC vs. GG: OR = 1.01, 95% CI = 0.92–1.12, p = 0.82).

Conclusion

The results provided evidence that CDKAL1 (rs7754840) gene polymorphism is associated with the susceptibility of GDM in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Several studies have examined the association between the CDKAL1 gene polymorphism (rs7754840) and gestational diabetes susceptibility, which were included in the meta-analysis. More details can be found in Table 1.

The data can be accessed at the following addresses:

https://doi.org/10.1007/s00125-008-1196-4

https://doi.org/10.1371/journal.pone.0026953

https://doi.org/10.2337%2Fdb11-1034

https://doi.org/10.1089/dia.2014.0349

https://doi.org/10.18632/oncotarget.22999

https://doi.org/10.1371%2Fjournal.pone.0169781

https://doi.org/10.1186%2Fs13104-018-3288-7

https://doi.org/10.1038%2Fs41598-019-41605-3

https://doi.org/10.3389%2Ffendo.2021.628582

https://doi.org/10.1186/s13098-021-00782-w

References

  1. Yu XY, Song LP, Wei SD, Wen XL, Liu DB. CDK5 regulatory subunit-associated protein 1-like 1 gene polymorphisms and gestational diabetes mellitus risk: a trial sequential meta-analysis of 13,306 subjects. Front Endocrinol (Lausanne). 2021;12: 722674.

    Article  PubMed  Google Scholar 

  2. Sayehmiri F, Bakhtiyari S, Darvishi P, Sayehmiri K. Prevalence of gestational diabetes mellitus in Iran: a systematic review and meta-analysis study. Iran J Obstet Gynecol Infertil. 2013;15(40):16–23.

    Google Scholar 

  3. Elliott TL, Pfotenhauer KM. Classification and diagnosis of diabetes. Prim Care. 2022;49(2):191–200.

    Article  PubMed  Google Scholar 

  4. Sacks DA, Hadden DR, Maresh M, Deerochanawong C, Dyer AR, Metzger BE, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care. 2012;35(3):526–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sürücü HA, Besen DB, Duman M, Erbil EY. Coping with stress among pregnant women with gestational diabetes mellitus. J Caring Sci. 2018;7(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hosler AS, Nayak SG, Radigan AM. Stressful events, smoking exposure and other maternal risk factors associated with gestational diabetes mellitus. Paediatr Perinat Epidemiol. 2011;25(6):566–74.

    Article  PubMed  Google Scholar 

  7. O’Sullivan JB, Mahan CM. Criteria for the oral glucose tolerance test in pregnancy. Diabetes. 1964;13:278–85.

    CAS  PubMed  Google Scholar 

  8. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25(10):1862–8.

    Article  PubMed  Google Scholar 

  9. Sebire NJ, Jolly M, Harris J, Regan L, Robinson S. Is maternal underweight really a risk factor for adverse pregnancy outcome? A population-based study in London. Bjog. 2001;108(1):61–6.

    CAS  PubMed  Google Scholar 

  10. Ronnenberg AG, Wang X, Xing H, Chen C, Chen D, Guang W, et al. Low preconception body mass index is associated with birth outcome in a prospective cohort of Chinese women. J Nutr. 2003;133(11):3449–55.

    Article  CAS  PubMed  Google Scholar 

  11. Mpondo BC, Ernest A, Dee HE. Gestational diabetes mellitus: challenges in diagnosis and management. J Diabetes Metab Disord. 2015;14:42.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dalfrà MG, Burlina S, Del Vescovo GG, Lapolla A. Genetics and epigenetics: new insight on gestational diabetes mellitus. Front Endocrinol (Lausanne). 2020;11: 602477.

    Article  PubMed  Google Scholar 

  13. Di Cianni G, Miccoli R, Volpe L, Lencioni C, Del Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev. 2003;19(4):259–70.

    Article  PubMed  Google Scholar 

  14. Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol. 2007;50(4):938–48.

    Article  PubMed  Google Scholar 

  15. Lapolla A, Dalfrà MG, Mello G, Parretti E, Cioni R, Marzari C, et al. Early detection of insulin sensitivity and beta-cell function with simple tests indicates future derangements in late pregnancy. J Clin Endocrinol Metab. 2008;93(3):876–80.

    Article  CAS  PubMed  Google Scholar 

  16. Pantham P, Aye IL, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36(7):709–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lapolla A, Dalfrà MG, Sanzari M, Fedele D, Betterle C, Masin M, et al. Lymphocyte subsets and cytokines in women with gestational diabetes mellitus and their newborn. Cytokine. 2005;31(4):280–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh C, Das N, Saha S, Kundu T, Sircar D, Roy P. Involvement of Cdkal1 in the etiology of type 2 diabetes mellitus and microvascular diabetic complications: a review. J Diabetes Metab Disord. 2022;21(1):991–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng Q, Zou D, Gu S, Han F, Cao S, Wei Y, et al. Different associations between CDKAL1 variants and type 2 diabetes mellitus susceptibility: a meta-analysis. Front Genet. 2021;12: 783078.

    Article  CAS  PubMed  Google Scholar 

  20. Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, et al. A brain-specific activator of cyclin-dependent kinase 5. Nature. 1994;371(6496):423–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ching YP, Pang AS, Lam WH, Qi RZ, Wang JH. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor. J Biol Chem. 2002;277(18):15237–40.

    Article  CAS  PubMed  Google Scholar 

  22. Li C, Shen K, Yang M, Yang Y, Tao W, He S, et al. Association between single nucleotide polymorphisms in CDKAL1 and HHEX and type 2 diabetes in Chinese population. Diabetes Metab Syndr Obes. 2020;13:5113–23.

    Article  CAS  PubMed  Google Scholar 

  23. Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, Matsushita M, et al. Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med. 2005;11(10):1104–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem. 2006;281(39):28858–64.

    Article  CAS  PubMed  Google Scholar 

  25. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–5.

    Article  CAS  PubMed  Google Scholar 

  26. Horikawa Y, Miyake K, Yasuda K, Enya M, Hirota Y, Yamagata K, et al. Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J Clin Endocrinol Metab. 2008;93(8):3136–41.

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y, Li S, Zhang Z, Yuan C. Association between gene polymorphism of CDKAL1 and gestational diabetes mellitus. Chin J Diabetes. 2015;23(6):501–4.

    CAS  Google Scholar 

  28. Cho YM, Kim TH, Lim S, Choi SH, Shin HD, Lee HK, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia. 2009;52(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  29. Nk MA, Na MI, Mahdy ZA, Ahmad S, Siraj H, Jaafar R, et al. An analysis of targeted single nucleotide polymorphisms for the risk prediction of gestational diabetes mellitus in a cohort of Malaysian patients. Asia-Pac J Mol Med. 2011;1:1–8.

    Google Scholar 

  30. Wang Y, Nie M, Li W, Ping F, Hu Y, Ma L, et al. Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLoS ONE. 2011;6(11): e26953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwak SH, Kim SH, Cho YM, Go MJ, Cho YS, Choi SH, et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes. 2012;61(2):531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanthimathi S, Chidambaram M, Liju S, Bhavadharini B, Bodhini D, Prakash VG, et al. Identification of genetic variants of gestational diabetes in South Indians. Diabetes Technol Ther. 2015;17(7):462–7.

    Article  CAS  PubMed  Google Scholar 

  33. Popova PV, Klyushina AA, Vasilyeva LB, Tkachuk AS, Bolotko YA, Gerasimov AS, et al. Effect of gene-lifestyle interaction on gestational diabetes risk. Oncotarget. 2017;8(67):112024–35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosta K, Al-Aissa Z, Hadarits O, Harreiter J, Nádasdi Á, Kelemen F, et al. Association study with 77 SNPs confirms the robust role for the rs10830963/G of MTNR1B variant and identifies two novel associations in gestational diabetes mellitus development. PLoS ONE. 2017;12(1): e0169781.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Noury AE, Azmy O, Alsharnoubi J, Salama S, Okasha A, Gouda W. Variants of CDKAL1 rs7754840 (G/C) and CDKN2A/2B rs10811661 (C/T) with gestational diabetes: insignificant association. BMC Res Notes. 2018;11(1):181.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xie K, Chen T, Zhang Y, Wen J, Cui X, You L, et al. Association of rs10830962 polymorphism with gestational diabetes mellitus risk in a Chinese population. Sci Rep. 2019;9(1):5357.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Popova PV, Klyushina AA, Vasilyeva LB, Tkachuk AS, Vasukova EA, Anopova AD, et al. Association of common genetic risk variants with gestational diabetes mellitus and their role in GDM prediction. Front Endocrinol (Lausanne). 2021;12: 628582.

    Article  PubMed  Google Scholar 

  38. Amin USM, Parvez N, Rahman TA, Hasan MR, Das KC, Jahan S, et al. CDKAL1 gene rs7756992 A/G and rs7754840 G/C polymorphisms are associated with gestational diabetes mellitus in a sample of Bangladeshi population: implication for future T2DM prophylaxis. Diabetol Metab Syndr. 2022;14(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bahreiny SS, Harooni E, Dabbagh MR, Ebrahimi R. Circulating serum preptin levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. Int J Reprod Biomed. 2023;21(5):367.

    Google Scholar 

  40. Brambillasca S, Altkrueger A, Colombo SF, Friederich A, Eickelmann P, Mark M, et al. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells. J Biol Chem. 2012;287(50):41808–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown J, Grzeskowiak L, Williamson K, Downie MR, Crowther CA. Insulin for the treatment of women with gestational diabetes. Cochrane Database Syst Rev. 2017;11(11):Cd012037.

    PubMed  Google Scholar 

  42. Caissutti C, Berghella V. Scientific evidence for different options for GDM screening and management: controversies and review of the literature. Biomed Res Int. 2017;2017:2746471.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jin L, An Z, Xu B, Mu D, Fu S, Hu H, et al. The association between rs12807809 polymorphism in neurogranin gene and risk of schizophrenia: a meta-analysis. Medicine (Baltimore). 2019;98(51): e18518.

    Article  CAS  PubMed  Google Scholar 

  44. Juan J, Yang H. Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China. Int J Environ Res Public Health. 2020;17(24):9517.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Khambule L, George JA. The role of inflammation in the development of GDM and the use of markers of inflammation in GDM screening. Adv Exp Med Biol. 2019;1134:217–42.

    Article  CAS  PubMed  Google Scholar 

  46. Radzicka S, Pietryga M, Iciek R, Brązert J. The role of visfatin in pathogenesis of gestational diabetes (GDM). Ginekol Pol. 2018;89(9):518–21.

    Article  PubMed  Google Scholar 

  47. Alharbi KK, Al-Sulaiman AM, Shedaid KMB, Al-Shangiti AM, Marie M, Al-Sheikh YA, et al. MTNR1B genetic polymorphisms as risk factors for gestational diabetes mellitus: a case-control study in a single tertiary care center. Ann Saudi Med. 2019;39(5):309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ao D, Zhao Q, Song JY, Liu Z, Wang Y, Wang HJ, et al. The association of the glucokinase rs4607517 polymorphism with gestational diabetes mellitus and its interaction with sweets consumption in Chinese women. Public Health Nutr. 2021;24(9):2563–9.

    Article  PubMed  Google Scholar 

  49. Li X, Su J, Zheng K, Lin S, Chen S, Wang B, et al. Assessment of the association between the polymorphism rs1256031 of the estrogen receptor β gene and GDM susceptibility. Nagoya J Med Sci. 2020;82(4):703–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang C, Bao W, Rong Y, Yang H, Bowers K, Yeung E, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update. 2013;19(4):376–90.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Zhao Y. Influence of CDK5 regulatory subunit-associated protein 1-like 1 expression on the survival of patients with non-metastatic nasopharyngeal carcinoma. Cancer Manag Res. 2021;13:4821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takesue Y, Wei FY, Fukuda H, Tanoue Y, Yamamoto T, Chujo T, et al. Regulation of growth hormone biosynthesis by Cdk5 regulatory subunit associated protein 1-like 1 (CDKAL1) in pituitary adenomas. Endocr J. 2019;66(9):807–16.

    Article  CAS  PubMed  Google Scholar 

  53. Okamura T, Yanobu-Takanashi R, Takeuchi F, Isono M, Akiyama K, Shimizu Y, et al. Deletion of CDKAL1 affects high-fat diet-induced fat accumulation and glucose-stimulated insulin secretion in mice, indicating relevance to diabetes. PLoS ONE. 2012;7(11): e49055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kommoju UJ, Samy SK, Maruda J, Irgam K, Kotla JP, Velaga L, et al. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India. Indian J Med Res. 2016;143(4):455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verma AK, Goyal Y, Bhatt D, Beg MMA, Dev K, Alsahli MA, et al. Association between CDKAL1, HHEX, CDKN2A/2B and IGF2BP2 gene polymorphisms and susceptibility to type 2 diabetes in Uttarakhand, India. Diabetes Metab Syndr Obes. 2021;14:23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008;57(10):2834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This study was not financially supported. We appreciate all researchers whose articles were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskandar Taghizadeh.

Ethics declarations

Ethical approval

This article represents a systematic review and meta-analysis. It is important to note that the review does not include any studies involving human or animal participants conducted by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdizade, A.H., Bahreiny, S.S., Bastani, MN. et al. The influence of CDKAL1 (rs7754840) gene polymorphism on susceptibility to gestational diabetes mellitus in pregnant women: a systematic review and meta-analysis. Int J Diabetes Dev Ctries (2023). https://doi.org/10.1007/s13410-023-01272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13410-023-01272-7

Keywords

Navigation