Skip to main content

Advertisement

Log in

Genetic screening for pathogenic variants in type 2 diabetes of the Arab Gulf population: A systematic review and meta-analysis

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Objective

The Arab Gulf is highly vulnerable to T2DM and its serious consequences. The manner in which these populations respond to such alterations in their surroundings may largely be governed by their genetic makeup. This review aimed to screen the genetic loci candidates that are associated with T2DM to assess the most prominent one in the early diagnosis of this chronic dysfunction.

Methods

Variable pieces of literature were searched to assess the association between pathogenic single-nucleotide polymorphisms (SNPs) and the onset of T2DM in the Arab Gulf countries. The effects of odd ratio (OR), sample sizes, and collaborations of the captured genes of the eligible studies were analyzed. The protocol was registered in National Institute for Health Research.

Results

Twenty-seven pathogenic SNPs were identified in 16 genes that were reported in 31 articles encompassing 15,982 patients and 11,976 controls. The highest numbers of conducted research were localized in Iraq and Saudi Arabia with 39% and 32%, respectively. HNF4A and TCF7L2 genes represent the most extensively studied pathogenic genes in terms of the number of individuals included and the number of T2DM-related loci, respectively. Intron SNPs exhibited the highest percentages of pathogenic loci associated with T2DM with 61%. Moderate association between the pathogenic SNPs and disease outcome was observed, but strengths and weights of association vary across studies.

Conclusion

For a better understanding of the molecular etiology of T2DM, finding SNPs, and establishing a meaningful genotype-phenotype connection for complicated diabetic disorders, the cumulative relevance of identified pathogenic SNPs in Arab Gulf was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Davegårdh C, García-Calzón S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab. 2018;14:12–25 Elsevier.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119 Elsevier.

    Article  PubMed  Google Scholar 

  3. Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab Syndr Obes targets Ther. 2021;14:3567–602. Taylor & Francis.

  4. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res. 2018;3086167. Hindawi.

  5. Abuhendi N, Qush A, Naji F, Abunada H, Al Buainain R, Shi Z, et al. Genetic polymorphisms associated with type 2 diabetes in the Arab world: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2019;151:198–208 Elsevier.

    Article  CAS  PubMed  Google Scholar 

  6. Mustafa H, Al Shawwa H. Direct costs of diabetes mellitus in the United Arab Emirates in 2018. Int J Diabetes Dev Ctries. 2023;43:725–730. Springer.

  7. Suda N, Lee HJ. Initial diagnosis and management of type 2 diabetes mellitus. In: Davies TF, editor. A Case-Based Guid to Clin Endocrinol. Springer; 2022. pp. 353–67.

  8. Leong A, Porneala B, Dupuis J, Florez JC, Meigs JB. Type 2 diabetes genetic predisposition, obesity, and all-cause mortality risk in the US: a multiethnic analysis. Diabetes Care Am Diabetes Assoc. 2016;39:539–46.

    Article  CAS  Google Scholar 

  9. Sandor C, Beer NL, Webber C. Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene network. PLoS Comput Biol Public Libr Sci. 2017;13:e1005816.

    Article  Google Scholar 

  10. Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9:2941 Nature Publishing Group UK London.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu YH, Zhou YW, Yang JA, Tu ZG, Ji SY, Huang ZY, et al. Gene polymorphisms associated with susceptibility to coronary artery disease in Han Chinese people. Genet Mol Res. 2014;13:2619–27.

    Article  CAS  PubMed  Google Scholar 

  12. Schiavo JH. PROSPERO: an international register of systematic review protocols. Med Ref Serv Q. 2019;38:171–80 Taylor & Francis.

    Article  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906 Elsevier.

    Article  PubMed  Google Scholar 

  14. Dugan J, Shubrook J. International classification of diseases, 10th revision, coding for diabetes. Clin Diabetes Am Diabetes Assoc. 2017;35:232–8.

    Article  Google Scholar 

  15. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447-52 Oxford University Press.

    Article  CAS  PubMed  Google Scholar 

  16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504 Cold Spring Harbor Lab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–66 Nature Publishing Group UK London.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, et al. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics BioMed Central. 2022;16:1–28.

    Google Scholar 

  19. Shoily SS, Ahsan T, Fatema K, Sajib AA. Common genetic variants and pathways in diabetes and associated complications and vulnerability of populations with different ethnic origins. Sci Rep. 2021;11:7504 Nature Publishing Group UK London.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alharbi KK, Khan IA, Syed R. Circulating C5L2 gene polymorphism is associated with type 2 diabetes mellitus in Saudi population. Mol Biol Rep. 2013;40:6323–7 Springer.

    Article  CAS  PubMed  Google Scholar 

  21. Dhumad MM, Hamdan FB, Al-Mayah QS. Angiotensin-converting enzyme insertion/deletion (I/D) gene polymorphism in Iraqi type 2 diabetic patients: association with the risk of cardiac autonomic neuropathy. Egypt J Med Hum Genet. 2020;21:1–7 SpringerOpen.

    Article  Google Scholar 

  22. Alharbi KK, Ali Khan I, Syed R, Alharbi FK, Mohammed AK, Vinodson B, et al. Association of JAZF1 and TSPAN8/LGR5 variants in relation to type 2 diabetes mellitus in a Saudi population. Diabetol Metab Syndr. 2015;7:1–7 Springer.

    Article  Google Scholar 

  23. Hussain MK, Deli FA, Algenabi AHA, Abdul-Rudha KH. Adiponectin gene polymorphisms as a predictor for development of type 2 diabetes mellitus in Iraqi population. Gene. 2018;662:118–22 Elsevier.

    Article  CAS  PubMed  Google Scholar 

  24. Algenabi AA, Kaftan AN, Hussain MK, Wdaah FA, Naser FH. The impact of promoter single nucleotide polymorphism (-11391 G/A) on type II diabetes mellitus in Iraqi population. Gene Reports. 2021;23:101115 Elsevier.

    Article  CAS  Google Scholar 

  25. Kaftan AN, Hussain MK. Association of adiponectin gene polymorphism rs266729 with type two diabetes mellitus in Iraqi population A pilot study. Gene. 2015;570:95–9 Elsevier.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Daghri NM, Alkharfy KM, Alokail MS, Alenad AM, Al-Attas OS, Mohammed AK, et al. Assessing the contribution of 38 genetic loci to the risk of type 2 diabetes in the S audi A rabian P opulation. Clin Endocrinol (Oxf). 2014;80:532–7 Wiley Online Library.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Kashwan TA, Algenabi AHA, Omara AM, Kaftan AN. Association of vitamin D receptor gene polymorphisms BsmI (rs 1544410) and TaqI rs (731236) with the type 2 diabetes mellitus in Iraqi Patients from the middle Euphrates region. Meta Gene. 2021;28:100854 Elsevier.

    Article  CAS  Google Scholar 

  28. Al-Daghri NM, Al-Attas O, Alokail MS, Alkharfy KM, Draz HM, Agliardi C, et al. Vitamin D receptor gene polymorphisms and HLA DRB1* 04 cosegregation in Saudi type 2 diabetes patients. J Immunol AAI. 2012;188:1325–32.

    Article  CAS  Google Scholar 

  29. Kaftan AN, Hussain MK, Algenabi AHA, Omara AM, Al-Kashwan TA. Association of sunshine vitamin receptor gene polymorphisms (rs 2228570) and (rs7975232) with the type 2 diabetes mellitus in Iraqi patients from the middle Euphrates region. Gene Reports. 2021;22:100977 Elsevier.

    Article  CAS  Google Scholar 

  30. Al-Tuma FJ, Obed KH. Association between fat mass and obesity associated (FTO) gene polymorphism (rs9939609) and lipid profile in type 2 diabetic obese Iraqi male. Iraq Med J. 2018;2:15–9.

    Google Scholar 

  31. Younus LA, Algenabi AHA, Abdul-Zhara MS, Hussein MK. FTO gene polymorphisms (rs9939609 and rs17817449) as predictors of Type 2 Diabetes Mellitus in obese Iraqi population. Gene. 2017;627:79–84 Elsevier).

    Article  CAS  PubMed  Google Scholar 

  32. Bazzi MD, Nasr FA, Alanazi MS, Alamri A, Turjoman AA, Moustafa AS, et al. Association between FTO, MC4R, SLC30A8, and KCNQ1 gene variants and type 2 diabetes in Saudi population. Genet Mol Res. 2014;13:10194–203.

    Article  CAS  PubMed  Google Scholar 

  33. Bakhashab S, Filimban N, Altall RM, Nassir R, Qusti SY, Alqahtani MH, et al. The effect sizes of PPARγ rs1801282, FTO rs9939609, and MC4R rs2229616 variants on type 2 diabetes mellitus risk among the western Saudi population: a cross-sectional prospective study. Genes (Basel). 2020;11:98 MDPI.

    Article  CAS  PubMed  Google Scholar 

  34. Osman W, Tay GK, Alsafar H. Multiple genetic variations confer risks for obesity and type 2 diabetes mellitus in Arab descendants from UAE. Int J Obes. 2018;42:1345–53 Nature Publishing Group UK London.

    Article  CAS  Google Scholar 

  35. Acharya S, Al-Elq A, Al-Nafaie A, Muzaheed M, Al-Ali A. Type 2 diabetes mellitus susceptibility gene TCF7L2 is strongly associated with hyperglycemia in the Saudi Arabia population of the eastern province of Saudi Arabia. Eur Rev Med Pharmacol Sci. 2015;19:3100–6.

    CAS  PubMed  Google Scholar 

  36. Saadi H, Nagelkerke N, Carruthers SG, Benedict S, Abdulkhalek S, Reed R, et al. Association of TCF7L2 polymorphism with diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of Emirati subjects. Diabetes Res Clin Pract. 2008;80:392–8 Elsevier.

    Article  CAS  PubMed  Google Scholar 

  37. Khan SM, El Karte N, El Hajj Chehadeh S, Hassoun A, Afandi B, Tay GK, et al. Association between type 2 diabetes mellitus & TCF7L2 gene variants in the Emirati population: genetics of diabetes in the United Arab Emirates. Am J Hum Biol. 2021;33:e23434 Wiley Online Library.

    Article  PubMed  Google Scholar 

  38. Mustafa S, Younus D. Association of TCF7L2 rs7903146 polymorphism with the risk of type 2 diabetes mellitus (T2DM) among Kurdish population in Erbil Province, Iraq. Indian J Clin Biochem. 2020;36:312–8. Springer.

  39. Al Ali M, El Hajj Chehadeh S, Osman W, Almansoori K, Abdulrahman M, Tay G, et al. Investigating the association of rs7903146 of TCF7L2 gene, rs5219 of KCNJ11 gene, rs10946398 of CDKAL1 gene, and rs9939609 of FTO gene with type 2 diabetes mellitus in Emirati population. Meta Gene. 2019;21:100600 Elsevier.

    Article  Google Scholar 

  40. O’Beirne SL, Salit J, Rodriguez-Flores JL, Staudt MR, Abi Khalil C, Fakhro KA, et al. Type 2 diabetes risk allele loci in the Qatari population. PLoS One. 2016;11:e0156834 Public Library of Science San Francisco, CA USA.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Al-Safar H, Hassoun A, Almazrouei S, Kamal W, Afandi B, Rais N. Association of the genetic polymorphisms in transcription factor 7-like 2 and peroxisome proliferator-activated receptors-γ2 with type 2 diabetes mellitus and its interaction with obesity status in Emirati Population. J Diabetes Res. 2015;2015:129695. Hindawi.

  42. Fadheel HK, Kaftan AN, Naser FH, Hussain MK, Algenabi AHA, Mohammad HJ, et al. Association of CDKN2A/B gene polymorphisms (rs10811661 and rs2383208) with type 2 diabetes mellitus in a sample of Iraqi population. Egypt J Med Hum Genet. 2022;23:1–7 Springer.

    Article  Google Scholar 

  43. Al-Sinani S, Woodhouse N, Al-Mamari A, Al-Shafie O, Al-Shafaee M, Al-Yahyaee S, et al. Association of gene variants with susceptibility to type 2 diabetes among Omanis. World J Diabetes. 2015;6:358 Baishideng Publishing Group Inc.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Musafer KNJ, Huyop FZ, Ewadh MJ, Supriyanto E, Al-Thuwaini TM, Al-Shuhaib MBS. The single nucleotide polymorphisms rs11761556 and rs12706832 of the leptin gene are associated with type 2 diabetes mellitus in the Iraqi population. Arch Biol Sci. 2021;73:93–101.

    Article  Google Scholar 

  45. Obied MR, Al-Tu’ma FJ, Al-jameel HH. Role of polymorphism (rs1024611) in monocyte chemoattractant protein-1 gene in diabetic foot ulcer of Iraqi patients. Gene Reports. 2019;17:100502 Elsevier.

    Article  Google Scholar 

  46. Muftin NQ, Jubair S. KCNJ11 polymorphism is associated with type 2 diabetes mellitus in Iraqi patients. Gene Reports. 2019;17:100480 Elsevier.

    Article  Google Scholar 

  47. Alsmadi O, Al-Rubeaan K, Wakil SM, Imtiaz F, Mohamed G, Al-Saud H, et al. Genetic study of Saudi diabetes (GSSD): significant association of the KCNJ11 E23K polymorphism with type 2 diabetes. Diabetes Metab Res Rev. 2008;24:137–40 Wiley Online Library.

    Article  CAS  PubMed  Google Scholar 

  48. Upadhyay R, Robay A, Fakhro K, Abi Khadil C, Zirie M, Jayyousi A, et al. Role of SLMAP genetic variants in susceptibility of diabetes and diabetic retinopathy in Qatari population. J Transl Med BioMed Central. 2015;13:1–9.

    Google Scholar 

  49. Alharbi KK, Khan IA, Munshi A, Alharbi FK, Al-Sheikh Y, Alnbaheen MS. Association of the genetic variants of insulin receptor substrate 1 (IRS-1) with type 2 diabetes mellitus in a Saudi population. Endocrine. 2014;47:472–7 Springer.

    Article  CAS  PubMed  Google Scholar 

  50. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45 Nature Publishing Group US New York.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khan SM, El Karte N, El Hajj Chehadeh S, Hassoun A, Afandi B, Tay GK, et al. Association between type 2 diabetes mellitus & TCF7L2 gene variants in the Emirati population: Genetics of diabetes in the United Arab Emirates. Am J Hum Biol. 2020;2020:e23434 Wiley Online Library.

    Google Scholar 

  52. Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, et al. The diabetes gene and Wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes Am Diabetes Assoc. 2018;67:554–68.

    CAS  Google Scholar 

  53. Badi MA, Al-Shuhaib MBS, Aljubouri TRS, Al-Thuwaini TM, Dawud HH, Hussein TH, et al. Rapid and optimized protocol for efficient PCR-SSCP genotyping for wide ranges of species. Biologia (Bratisl). 2021;76:2413–20.

    Article  CAS  Google Scholar 

  54. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84 Nature Publishing Group UK London.

    Article  CAS  PubMed  Google Scholar 

  55. Hussain M, Khan HN, Abbas S, Ali A, Aslam MN, Awan FR. Tetra-ARMS-PCR assay development for genotyping of AGT rs699 T/C polymorphism, its comparison with PCR-RFLP and application in a case-control association study of cardiovascular disease patients. Nucl Nucls Nucl Acids. 2023;42(8):603–18. Taylor & Francis.

  56. Matkovich SJ, Van Booven DJ, Cappola TP, Dorn GW II. Association of an intronic, but not any exonic, FRMD4B sequence variant and heart failure. Clin Transl Sci. 2010;3:134–9 Wiley Online Library.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones MO. Political change in the Arab Gulf States: Stuck in transition. J Arab Stud. 2012;2(2):243–5. Taylor & Francis.

  58. Roth U, Curth K, Unterman TG, Kietzmann T. The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2004;279:2623–31 ASBMB.

    Article  CAS  PubMed  Google Scholar 

  59. Son GW, Kim G-D, Yang H, Park HR, Park YS. Alteration of gene expression profile by melatonin in endothelial cells. BioChip J. 2014;8:91–101 Springer.

    Article  CAS  Google Scholar 

  60. Dommel S, Blüher M. Does CC motif chemokine ligand 2 (CCL2) link obesity to a pro-inflammatory state? Int J Mol Sci. 2021;22:1500 MDPI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang T, Garstka MA, Li K. The controversial C5a receptor C5aR2: its role in health and disease. J Immunol Res. 2017;2017:8193932. Hindawi.

  62. Yiannakouris N, Cooper JA, Shah S, Drenos F, Ireland HA, Stephens JW, et al. IRS1 gene variants, dysglycaemic metabolic changes and type-2 diabetes risk. Nutr Metab Cardiovasc Dis. 2012;22:1024–30 Elsevier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mousavinasab F, Tähtinen T, Jokelainen J, Koskela P, Vanhala M, Oikarinen J, et al. Common polymorphisms in the PPARγ2 and IRS-1 genes and their interaction influence serum adiponectin concentration in young Finnish men. Mol Genet Metab. 2005;84:344–8 Elsevier.

    Article  CAS  PubMed  Google Scholar 

  64. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. Nature. 2009;41:1110–5 Publishing Group US New York.

    CAS  Google Scholar 

  65. Albegali AA, Shahzad M, Mahmood S, Ullah MI. Genetic association of insulin receptor substrate-1 (IRS-1, rs1801278) gene with insulin resistant of type 2 diabetes mellitus in a Pakistani population. Mol Biol Rep. 2019;46:6065–70 Springer.

    Article  PubMed  Google Scholar 

  66. Habibullah M, Akter F, Qin X, Lohani M, Aldughaim MS, Al-Kaabi Y. Association between angiotensin-converting enzyme-insertion/deletion polymorphism and diabetes mellitus-2 in Saudi population. Asian Pacific J Cancer Prev APJCP. 2021;22:119 Shahid Beheshti University of Medical Sciences.

    Article  CAS  Google Scholar 

  67. Stanciu GD, Ababei DC, Bild V, Bild W, Paduraru L, Gutu MM, et al. Renal contributions in the pathophysiology and neuropathological substrates shared by chronic kidney disease and Alzheimer’s disease. Brain Sci. 2020;10:563 MDPI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moon H-S, Dalamaga M, Kim S-Y, Polyzos SA, Hamnvik O-P, Magkos F, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev. 2013;34:377–412 Oxford University Press.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moran O, Phillip M. Leptin: obesity, diabetes and other peripheral effects—a review. Pediatr Diabetes. 2003;4:101–9 Wiley Online Library.

    Article  CAS  PubMed  Google Scholar 

  70. Saccone D, Asani F, Bornman L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene. 2015;561:171–80 Elsevier.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. N. J. M. designed the study and conducted the literature search. M. R. conducted the data extraction and analyzed the statistical data. M. B. S. A. conducted the in silico analyses and wrote the manuscript. All the authors revised the subsequent drafts for important intellectual content, read, and approved the final version of the manuscript. Both K. N. J. M. and M. R. contributed equally to this work.

Corresponding author

Correspondence to Mohammed Baqur S. Al-Shuhaib.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musafer, K.N.J., Rava, M. & Al-Shuhaib, M.B.S. Genetic screening for pathogenic variants in type 2 diabetes of the Arab Gulf population: A systematic review and meta-analysis. Int J Diabetes Dev Ctries (2023). https://doi.org/10.1007/s13410-023-01265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13410-023-01265-6

Keywords

Navigation