Skip to main content

Advertisement

Log in

Role of sensory feedback in postural control of the patients with diabetic neuropathy

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background/Purpose

Impaired balance is prevalent in patients with type II diabetes mellitus (T2DM). The aim of the current study was to evaluate the role of sensory information in these patients.

Methods

Stabilogram-diffusion analysis was utilized to categorize the balance into local and central control modes based on the center of pressure (CoP) data acquired from quiet standing tests of 36 patients with T2DM and 20 healthy individuals. Local control was considered the efforts of muscles to stiffen the joints. Central control was the mode in which sensory information is used. Open- and closed-eye conditions were added to detect other sensory sources during the standing. Traditional linear measures of stability were also calculated for anterior–posterior and mediolateral directions.

Results

Results showed that sway area, pathlength, and maximum velocity of the CoP are higher in the T2DM group (p < 0.001) in open-eye condition, but they did not change in eyes closed (p > 0.158). Both the local and central control mechanisms can cause postural instability in AP direction in patients with T2DM (p < 0.017). Contrarily, diabetes had no effect on the ML direction (p > 0.051). Patients with T2DM had a significant delay (about 225 ms greater than the controls) in the use of sensory information reflected in the AP direction outputs (p < 0.009).

Conclusion

The patients with T2DM had poorer stability due to the delayed use of the sensory information. Diabetic postural stability was not fully provided in comparison with the healthy people even with using the sensory information. Elimination of the visual feedback led to reduced postural balance in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data are available from the corresponding author.

References

  1. Tilling LM, Darawil K, Britton M. Falls as a complication of diabetes mellitus in older people. J Diabetes Complicat. 2006;20:158–62.

    Article  Google Scholar 

  2. Ajimsha M, Paul J, Chithra S. Efficacy of stability trainer in improving balance in type II diabetic patients with distal sensory neuropathy. J Diabetol. 2011;2:7.

    Google Scholar 

  3. Hsu C-R, Chen Y-T, Sheu WH-H. Glycemic variability and diabetes retinopathy: a missing link. J Diabetes Complicat. 2015;29:302–6.

    Article  Google Scholar 

  4. Hatef B, Bahrpeyma F, Mohajeri Tehrani MR. The comparison of muscle strength and short-term endurance in the different periods of type 2 diabetes. J Diabetes Metab Disord. 2014;13:1–10.

    Article  Google Scholar 

  5. Najafi B, Horn D, Marclay S, Crews RT, Wu S, Wrobel JS. Assessing postural control and postural control strategy in diabetes patients using innovative and wearable technology. J Diabetes Sci Technol. 2010;4:780–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vaz MM, Costa GC, Reis JG, Junior WM, de Paula FJA, Abreu DC. Postural control and functional strength in patients with type 2 diabetes mellitus with and without peripheral neuropathy. Arch Phys Med Rehabil. 2013;94:2465–70.

    Article  PubMed  Google Scholar 

  7. Boucher P, Teasdale N, Courtemanche R, Bard C, Fleury M. Postural stability in diabetic polyneuropathy. Diabetes Care. 1995;18:638–45.

    Article  CAS  PubMed  Google Scholar 

  8. Giacomini PG, Bruno E, Monticone G, Di Girolamo S, Magrini A, Parisi L, et al. Postural rearrangement in IDDM patients with peripheral neuropathy. Diabetes Care. 1996;19:372–4.

    Article  CAS  PubMed  Google Scholar 

  9. Morrison S, Colberg S, Parson H, Vinik A. Relation between risk of falling and postural sway complexity in diabetes. Gait Posture. 2012;35:662–8.

    Article  CAS  PubMed  Google Scholar 

  10. Dixit S, Maiya A, Shasthry B, Kumaran DS, Guddattu V. Postural sway in diabetic peripheral neuropathy among Indian elderly. Indian J Med Res. 2015;142:713.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mustapa A, Justine M, Mohd Mustafah N, Jamil N, Manaf H. Postural control and gait performance in the diabetic peripheral neuropathy: a systematic review. Biomed Res Int. 2016;2016:9305025.

    Article  PubMed  PubMed Central  Google Scholar 

  12. DiLiberto FE, Nawoczenski DA, Tome J, McKeon PO. Use of time-to-boundary to assess postural instability and predict functional mobility in people with diabetes mellitus and peripheral neuropathy. Gait Posture. 2021;83:141–6.

    Article  PubMed  Google Scholar 

  13. Wong E, Backholer K, Gearon E, Harding J, Freak-Poli R, Stevenson C, et al. Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013;1:106–14.

    Article  PubMed  Google Scholar 

  14. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. The Lancet Neurology. 2013;12:483–97.

    Article  PubMed  Google Scholar 

  15. Hughes TM, Ryan CM, Aizenstein HJ, Nunley K, Gianaros PJ, Miller R, et al. Frontal gray matter atrophy in middle aged adults with type 1 diabetes is independent of cardiovascular risk factors and diabetes complications. J Diabetes Complicat. 2013;27:558–64.

    Article  Google Scholar 

  16. Erus G, Battapady H, Zhang T, Lovato J, Miller ME, Williamson JD, et al. Spatial patterns of structural brain changes in type 2 diabetic patients and their longitudinal progression with intensive control of blood glucose. Diabetes Care. 2015;38:97–104.

    Article  CAS  PubMed  Google Scholar 

  17. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008;18:1085–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cui Y, Jiao Y, Chen Y-C, Wang K, Gao B, Wen S, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes. 2014;63:749–60.

    Article  CAS  PubMed  Google Scholar 

  19. Wang C-X, Fu K-L, Liu H-J, Xing F, Zhang S-Y. Spontaneous brain activity in type 2 diabetics revealed by amplitude of low-frequency fluctuations and its association with diabetic vascular disease: a resting-state FMRI study. PLoS ONE. 2014;9: e108883.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peng J, Qu H, Peng J, Luo T-Y, Lv F-J, Wang Z-N, et al. Abnormal spontaneous brain activity in type 2 diabetes with and without microangiopathy revealed by regional homogeneity. Eur J Radiol. 2016;85:607–15.

    Article  PubMed  Google Scholar 

  21. Xia W, Chen Y-C, Ma J. Resting-state brain anomalies in type 2 diabetes: a meta-analysis. Front Aging Neurosci. 2017;9:14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Centomo H, Termoz N, Savoie S, Beliveau L, Prince F. Postural control following a self-initiated reaching task in type 2 diabetic patients and age-matched controls. Gait Posture. 2007;25:509–14.

    Article  CAS  PubMed  Google Scholar 

  23. Allet L, Armand S, de Bie RA, Pataky Z, Aminian K, Herrmann FR, et al. Gait alterations of diabetic patients while walking on different surfaces. Gait Posture. 2009;29:488–93.

    Article  PubMed  Google Scholar 

  24. Collins JJ, De Luca CJ. Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res. 1993;95:308–18.

    Article  CAS  PubMed  Google Scholar 

  25. Toosizadeh N, Mohler J, Armstrong DG, Talal TK, Najafi B. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control. PLoS ONE. 2015;10: e0135255.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ashtiani MN, Azghani M-R. Open-and closed-loop responses of joint mechanisms in perturbed stance under visual and cognitive interference. Biomed Signal Process Control. 2018;42:1–8.

    Article  Google Scholar 

  27. Mitchell SL, Collin J, De Luca CJ, Burrows A, Lipsitz LA. Open-loop and closed-loop postural control mechanisms in Parkinson’s disease: increased mediolateral activity during quiet standing. Neurosci Lett. 1995;197:133–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kurz I, Oddsson L, Melzer I. Characteristics of balance control in older persons who fall with injury–a prospective study. J Electromyogr Kinesiol. 2013;23:814–9.

    Article  PubMed  Google Scholar 

  29. Safi K, Hutin E, Mohammed S, Albertsen IM, Delechelle E, Amirat Y, et al. Human static postures analysis using empirical mode decomposition. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): IEEE; 2016. p. 3765–8.

  30. Wuehr M, Pradhan C, Novozhilov S, Krafczyk S, Brandt T, Jahn K, et al. Inadequate interaction between open-and closed-loop postural control in phobic postural vertigo. J Neurol. 2013;260:1314–23.

    Article  CAS  PubMed  Google Scholar 

  31. Nardone A, Schieppati M. Group II spindle fibres and afferent control of stance. Clues from diabetic neuropathy. Clin Neurophysiol. 2004;115:779–89.

    Article  PubMed  Google Scholar 

  32. Nardone A, Grasso M, Schieppati M. Balance control in peripheral neuropathy: are patients equally unstable under static and dynamic conditions? Gait Posture. 2006;23:364–73.

    Article  PubMed  Google Scholar 

  33. Simmons RW, Richardson C, Pozos R. Postural stability of diabetic patients with and without cutaneous sensory deficit in the foot. Diabetes Res Clin Pract. 1997;36:153–60.

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto R, Kinoshita T, Momoki T, Arai T, Okamura A, Hirao K, et al. Postural sway and diabetic peripheral neuropathy. Diabetes Res Clin Pract. 2001;52:213–21.

    Article  CAS  PubMed  Google Scholar 

  35. Simoneau GG, Ulbrecht JS, Derr JA, Cavanagh PR. Role of somatosensory input in the control of human posture. Gait Posture. 1995;3:115–22.

    Article  Google Scholar 

  36. Cavanagh PR, Simoneau GG, Ulbrecht JS. Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. J Biomech. 1993;26:23–40.

    Article  PubMed  Google Scholar 

  37. Abbruzzese G, Schenone A, Scramuzza G, Caponnetto C, Gasparetto B, Adezati L, et al. Impairment of central motor conduction in diabetic patients. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect. 1993;89:335–40.

    Article  CAS  Google Scholar 

  38. Moglia A, Arrigo A, Maurelli M, Alfonsi E, Bodini A, Lozza A, et al. Central motor conduction after magnetic stimulation in diabetes. Ital J Neurol Sci. 1998;19:10–4.

    Article  CAS  PubMed  Google Scholar 

  39. Muramatsu K, Ikutomo M, Tamaki T, Shimo S, Niwa M. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats. Brain Res. 2018;1680:115–26.

    Article  CAS  PubMed  Google Scholar 

  40. Almeida S, Riddell M, Cafarelli E. Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus. Muscle Nerve. 2008;37:231–40.

    Article  CAS  PubMed  Google Scholar 

  41. Ferris JK, Inglis JT, Madden KM, Boyd LA. Brain and body: a review of central nervous system contributions to movement impairments in diabetes. Diabetes. 2020;69:3–11.

    Article  CAS  PubMed  Google Scholar 

  42. Muramatsu K. Diabetes mellitus-related dysfunction of the motor system. Int J Mol Sci. 2020;21:7485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53:1543–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ferreira JP, Sartor CD, Leal AM, Sacco IC, Sato TO, Ribeiro IL, et al. The effect of peripheral neuropathy on lower limb muscle strength in diabetic individuals. Clin Biomech. 2017;43:67–73.

    Article  Google Scholar 

  45. Peterson MD, Zhang P, Choksi P, Markides KS, Al SS. Muscle weakness thresholds for prediction of diabetes in adults. Sports Med. 2016;46:619–28.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oh TJ, Kang S, Lee J-E, Moon JH, Choi SH, Lim S, et al. Association between deterioration in muscle strength and peripheral neuropathy in people with diabetes. J Diabetes Complicat. 2019;33:598–601.

    Article  Google Scholar 

  47. Collins J, De Luca C, Burrows A, Lipsitz L. Age-related changes in open-loop and closed-loop postural control mechanisms. Exp Brain Res. 1995;104:480–92.

    Article  CAS  PubMed  Google Scholar 

  48. Van Deursen RWM, Sanchez MM, Ulbrecht JS, Cavanagh PR. The role of muscle spindles in ankle movement perception in human subjects with diabetic neuropathy. Exp Brain Res. 1998;120:1–8.

    Article  PubMed  Google Scholar 

  49. Muller KA, Ryals JM, Feldman EL, Wright DE. Abnormal muscle spindle innervation and large-fiber neuropathy in diabetic mice. Diabetes. 2008;57:1693–701.

    Article  CAS  PubMed  Google Scholar 

  50. Yahya A, Kluding P, Pasnoor M, Wick J, Liu W, Dos Santos M. The impact of diabetic peripheral neuropathy on pinch proprioception. Exp Brain Res. 2019;237:3165–74.

    Article  CAS  PubMed  Google Scholar 

  51. IJzerman TH, Schaper NC, Melai T, Meijer K, Willems PJ, Savelberg HH. Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Res Clin Pract. 2012;95:345–51.

    Article  PubMed  Google Scholar 

  52. Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diabetes Metab Res Rev. 2016;32:40–50.

    Article  PubMed  Google Scholar 

  53. Mégrot F, Bardy BG, Dietrich G. Dimensionality and the dynamics of human unstable equilibrium. J Mot Behav. 2002;34:323–8.

    Article  PubMed  Google Scholar 

  54. Ashtiani MN, Azghani MR. Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations. Acta Neurobiologiae Experimentalis. 2017;77:168–75.

    Article  PubMed  Google Scholar 

  55. Mbongo F, Qu’hen C, Vidal P, Huy PTB, De Waele C. Role of vestibular input in triggering and modulating postural responses in unilateral and bilateral vestibular loss patients. Audiol Neurotol. 2009;14:130–8.

    Article  CAS  Google Scholar 

  56. Santos SM, da Silva RA, Terra MB, Almeida IA, De Melo LB, Ferraz HB. Balance versus resistance training on postural control in patients with Parkinson’s disease: a randomized controlled trial. Eur J Phys Rehabil Med. 2016;53:173–83.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank this study's participants and the Movement Disorders lab of Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Bahrpeyma.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical clearance

The Ethical Committee of Tabriz University of Medical Sciences approved the study (code: IR.TBZMED.REC.1397.655). All procedures were performed according to the Declaration of Helsinki. All participants signed informed consent forms before participating in the study. Informed Consent Informed consent was obtained from all participants included in the study.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisi, A., Hashemi-Oskouei, A., Ashtiani, M.N. et al. Role of sensory feedback in postural control of the patients with diabetic neuropathy. Int J Diabetes Dev Ctries 44, 77–83 (2024). https://doi.org/10.1007/s13410-023-01200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-023-01200-9

Keywords

Navigation