Skip to main content
Log in

Evaluation of antihyperglycaemic and antihyperlipidemic activity of Citrus sinensis peel extract on streptozotocin-induced diabetic rats

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

The present study was aimed to evaluate the antihyperglycaemic and antihyperlipidemic activity potential of Citrus sinensis ethanolic peel extract in normal and streptozotocin (STZ)-induced diabetic rats. The dose-dependent effects of 28-day oral treatment with ethanolic peel extract (250 and 500 mg/kg) from the plant of C. sinensis on blood glucose, glycosylated haemoglobin (HbA1c), plasma insulin, carbohydrate-metabolizing enzymes (hexokinase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, glycogen phosphorylase), glycogen levels and lipid levels were determined after oral administration of a dose of C. sinensis (250 and 500 mg/kg body weight) in diabetic groups. A significant decrease in blood glucose, glycosylated haemoglobin and lipid levels was observed in diabetic rats treated with C. sinensis. The activities of carbohydrate-metabolizing enzymes such as hexokinase were significantly increased whereas glucose-6-phosphatase was significantly decreased by the administration of C. sinensis in diabetic rats. A two-fold increase in insulin levels was observed, suggesting that the peel extract has an insulin secretory activity. The findings suggest that C. sinensis peel extract has potent antidiabetic activity in STZ-induced diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Osmani OH, Sekar DS, Senthil Kumar KL, Sahu RK, Roy A. In vivo antidiabetic potential of Artocarpus heterophyllus plant seeds in streptozotocin-induced-diabetic rats. Biomed Pharmacol J. 2009;2(2):339–43.

    Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    Article  PubMed  Google Scholar 

  3. World Health Organization (WHO). Quality control methods for medicinal plant materials. Geneva. 1998.

  4. Chalova VI, Crandall PG, Ricke SC. Microbial inhibitory and radical scavenging activities of cold-pressed terpeneless Valencia orange (Citrus sinensis) oil in different dispersing agents. J Sci Food Agric. 2010;90(5):870–6.

    CAS  PubMed  Google Scholar 

  5. Pan Z, Liu Q, Yun Z, Guan R, Zeng W, Xu Q, et al. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics. 2009;9(24):5455–70.

    Article  CAS  PubMed  Google Scholar 

  6. Kanaze FI, Termentzi A, Gabrieli C, Niopas I, Georgarakis M, Kokkalou E. The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin. Biomed Chromatogr. 2009;23(3):239–49.

    Article  CAS  PubMed  Google Scholar 

  7. Singh P, Shukla R, Prakash B, Kumar A, Singh S, Mishra PK, et al. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol. 2010;48(6):1734–40.

    Article  CAS  PubMed  Google Scholar 

  8. Hossain MZ, Shibib BA, Rahman R. Hypoglycemic effects of Coccinia indica inhibition of key gluconeogenic enzyme, glucose-6-phosphatase. Indian J Exp Biol. 1992;10:418–20.

    Google Scholar 

  9. Kokate CK. Practical pharmacognosy. New Delhi: Vallabh Prakashan; 1994. p. 107–13.

    Google Scholar 

  10. Harbourne JB. Phytochemcial methods: a guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall; 1984.

    Book  Google Scholar 

  11. Ghosh MN. Toxicity studies. In: Fundamentals of experimental pharmacology. Scientific Book Agency, Calcutta; 1984. p. 153–158.

  12. Turner MA. Screening methods in pharmacology. New York: Academic; 1965. p. 26.

    Google Scholar 

  13. Venkatesh S, Thilagavathy J, Shyam Sundar D. Anti-diabetic activity of flowers of Hibiscus rosasinensis. Fitoterapia. 2008;79:79.

    Article  CAS  PubMed  Google Scholar 

  14. Du Vigneaud V, Karr V. Carbohydrate utilization and disappearance. J Biol Chem. 1985;66:281.

    Google Scholar 

  15. Sasaki T, Matsy S, Sonae A. Effect of acetic acid concentration on the color reaction in the O-toluidine boric acid method for blood glucose estimation. Rinsho Kagaku. 1972;1:346–53.

    CAS  Google Scholar 

  16. Anderson L, Dinesen B, Jorgesen PN, Poulsen F, Roder MF. Enzyme immunoassay for intact human insulin in serum or plasma. Clin Chim Acta. 1993;38:578–85.

    Google Scholar 

  17. Brandstrup N, Kirk JE, Bruni C. The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol. 1957;12:166–71.

    Article  CAS  PubMed  Google Scholar 

  18. Koida H, Oda T. Pathological occurrence of glucose-6-phosphatase in liver disease. Clin Chim Acta. 1959;74:554–61.

    Google Scholar 

  19. Ellis HA, Kirkman HN. A colorimetric method for assay of erythrocyte glucose-6-phosphate dehydrogenase. Proc Soc Exp Biol Med. 1961;106:607–9.

    Article  Google Scholar 

  20. Shull KH, Ashmore J, Mayer J. Hexokinase, glucose-6-phosphatase and phosphorylase levels in hereditarily obese hyperglycemic mice. Arch Biochem Biophys. 1956;62:210–6.

    Article  CAS  PubMed  Google Scholar 

  21. Morales MA, Jabbagy AJ, Terenzi HF. Mutations affecting accumulation of glycogen. Neurospora News Lett. 1973;20:24–5.

    Google Scholar 

  22. Grover JK, Vats V. Shifting paradigm from conventional to alternate medicine. An introduction on traditional Indian medicine. Asia Pac Biotechnol News. 2001;5:28–32.

    Article  Google Scholar 

  23. Chakravarthy BK, Gupta S, Gambhir SS, Gode KD. Pacreatic beta cell regeneration: a novel antidiabetic mechanism of Petercarpus marsupium. Indian J Pharmacol. 1980;12:123–8.

    Google Scholar 

  24. Shanmugasundaram ERB, Rajeshwari G, Baskaran X, Kumar BRR, Shanmugasundaram KR, Ahmath BK. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin dependent diabetes mellitus. J Ethnopharmacol. 1990;30:281–94.

    Article  CAS  PubMed  Google Scholar 

  25. Cakici I, Hurmoglu C, Tunctan B, Abacioglu N, Kanzik I, Sener B. Hypoglycemic effect of Momordica charantia extracts in normoglycemic or cyprohepatidine-induced hyperglycemic mice. J Ethnopharmacol. 1994;44:117–21.

    Article  CAS  PubMed  Google Scholar 

  26. Hassan HA, El-Agmy SM, Gaur RL, Fernando A, Raj MHG, Ouhtit A. In vivo evidence of hepato and reno-protective effects of garlic oil against sodium nitrite-induced oxidative stress. Int J Biol Sci. 2009;5:249–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hikino H, Kobayashi M, Suzuki Y, Konno C. Mechanism of hypoglycemic activity of aconitan SA glycan from Aconitum carmichaeli roots. J Ethnopharmacol. 1987;19:916–23.

    Google Scholar 

  28. Weber G, Lea MA, Fisher EA, Stamm NB. Regulatory pattern of liver carbohydrate metabolizing enzymes: insulin as an inducer of key glycolytic enzymes. Enzymol Clin. 1966;7:11–24.

    CAS  Google Scholar 

  29. Fenwic DE, Oakenfull D. Saponin content of soya beans and some commercial soya bean products. J Sci Food Agric. 1980;32:273–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anusha Bhaskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.R.Z.A., Bhaskar, A. Evaluation of antihyperglycaemic and antihyperlipidemic activity of Citrus sinensis peel extract on streptozotocin-induced diabetic rats. Int J Diabetes Dev Ctries 35, 448–453 (2015). https://doi.org/10.1007/s13410-015-0310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-015-0310-7

Keywords

Navigation