Skip to main content

Advertisement

Log in

Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus (DM) has continued to raise concern globally and Curculigo pilosa (CP) is used for its treatment and management in folkloric medicine. In this study, the in vitro antioxidant abilities of CP and the effects of CP-supplemented diets on blood sugar, lipid metabolism, oxidative stress and key carbohydrate metabolizing enzymes in streptozotocin (STZ)-induced diabetic rats were investigated.

Methods

Polyphenol contents (total phenolic and total flavonoid) and antioxidant ability of different extracts of CP were determined in vitro. Diabetes mellitus were stimulated in healthy rats by single intraperitoneal administration of 50 mg/kg streptozotocin and it was confirmed by elevated blood glucose level after 3 days. Thirty six rats were distributed into six groups of six rats each and diabetic rats were fed with 5 and 10% CP-supplemented diet for 21 days. Thereafter, the effects of the dietary regimen were evaluated on blood glucose, body weight, hepatic carbohydrate metabolizing enzymes, lipid profile, oxidative stress markers, serum markers of hepatic and renal damages and histopathology studies.

Results

Different extracts of CP contained polyphenol contents and exhibited antioxidant properties in different models used. Diabetic rats showed elevated level of blood glucose and body weight loss. Treatment of diabetic rats with CP-supplemented diet significantly (p < 0.05) lowered the blood glucose and improved body weight loss. Also, the treatment with the CP-supplemented diet significantly (p < 0.05) enhanced the activities of hepatic glycolytic (hexokinase and glucose-6-dehydrogenase) and lowered the gluconeogenic (fructose 1, 6 biphosphatase and glucose-6-phosphatase) enzymes in diabetic rats. The lipid profile, oxidative stress markers and serum markers of hepatic and renal damages were significantly (p < 0.05) restored to near normalcy in the diabetic rats. Histopathological slides also showed improvements in pancreas and hepatic tissues of diabetic rats treated with CP-supplemented diet.

Conclusion

Data obtained in this study suggested that CP-supplemented diet could be used as dietary regimen in the management of DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cam ME, Hazar-Yavuz AN, Yildiza S, Ertas B, Adakul BA, Taskin T, Alan S, Kabasakal L. The methanolic extract of Thymus praecox subsp. skorpiliivar. skorpiliirestores glucose homeostasis, ameliorates insulin resistance and improvespancreatic β-cell function on streptozotocin/nicotinamide-induced type 2diabetic rats Journal Ethnopharmacol 2019;(231): 29–38.

  2. International Diabetes Federation the IDF Diabetes Atlas, Ninth Edition; 2019.

  3. Levinthal GN, Tavill AS. Liver disease and diabetes mellitus. Clin Diabetes. 1999;17(2):1–20.

    Google Scholar 

  4. Guven A, Yavuz O, Cam M, Ercan F, Bukan N, Comunoglu C, et al. Effects of melatonin on streptozotocin-induced diabetic liver injury in rats. ActaHistochem. 2006;108:85–93. https://doi.org/10.1016/j.acthis.2006.03.005.

    Article  CAS  Google Scholar 

  5. Mohamed J, Nafizah AHN, Zariyantey AH, Budin SB. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation Sultan QaboosUniver. Med J. 2016;16(2):132–41.

    Google Scholar 

  6. Karigidi KO, Olaiya CO, Antidiabetic activity of corn steep liquor extract of Curculigo pilosa and its solvent fractions in streptozotocin-induced diabetic rats, J TraditiComplemen Med https://doi.org/10.1016/j.jtcme.2019.06.005, 2019.

  7. Cicero LTC, Yenshou L, Arlene PB, Yi-Ching C, Shao-Chih C, Wen-Chin Y.Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry, Biology, and Potential Application of Selected Plants and Compounds Evidence-Based ComplemenAltern Med Volume 2013 |Article ID 378657 | 33 pages | 10.1155 /2013/378657.

  8. Kasole R, Martin HD, Kimiywe J. Traditional Medicine and Its Role in the Management of Diabetes Mellitus: (Patients’ and Herbalists’ Perspectives Evidence-Based ComplemenAltern Med Volume 2019, Article ID 2835691, 12 pages. https://doi.org/10.1155/2019/2835691.

  9. Nasri H, Shirzad H, Baradaran A, Rafieian-kopaei M. Antioxidant plants and diabetes mellitus. J Res Med Sci Off J Isfahan Univ Med Sci. 2015;20:491–502.

    CAS  Google Scholar 

  10. Sofidiya MO, Oduwole B, Bamgbade E, Odukoya O, Adenekan S. Nutritional composition and antioxidant activities of Curculigo pilosa (Hypoxidaceae) rhizome African. J Biotechnol. 2011;10(75):17275–81.

    CAS  Google Scholar 

  11. Nie Y, Dong X, He Y, Yuan T, Han T, Rahman K, et al. Medicinal plants of genus Curculigo: traditional uses and a phytochemical and ethnopharmacological review. J Ethnopharmacol. 2013;147:547–63.

    CAS  PubMed  Google Scholar 

  12. Gbadamosi IT, Egunyomi A. Phytochemical screening and invitro anticandidal activity of extracts and essential oil of Curculigo pilosa (Schum and Thonn) Engl. Hypoxidaceae Afr J Biotechnol. 2010;9(8):1236–40.

    Google Scholar 

  13. Olaiya CO, Karigidi KO. Hypoglycemic effects of corn steep liquor extracts in Streptozotocin-induced diabetic rats. Int J Biochem Res Rev. 2016;13(2):1–8.

    Google Scholar 

  14. Adefegha SA, Oyeleye SI, Oboh G. African crocus (Curculigo pilosa) and wonderful kola (Buchholziacoriacea) seeds modulate critical enzymes relevant to erectile dysfunction and oxidative stress. J Complement Integrat Med 2018; DOI: https://doi.org/10.1515/jcim-2016-0159, 15.

  15. Karigidi KO, Olaiya CO. In vitro Antidiabetic, antioxidant and anti-lipid peroxidative activities of corn steep liquor extracts of Curculigopilosa and its solvent fractions, J herbs. Spic Med Plants. 2019;25(4):377–88.

    CAS  Google Scholar 

  16. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003;81:321–6.

    CAS  Google Scholar 

  17. Park Y-S, Jung S-T, Kang S-G, Heo BK, Arancibia-Avila P, Toledo F, et al. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 2008;107:640–8.

    CAS  Google Scholar 

  18. Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986;44:307–15.

    CAS  Google Scholar 

  19. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;26(9):337–41.

    Google Scholar 

  20. Gyamfi M, Yonamine M, Aniya Y. Free radical scavenging action of medicinal herbs from Ghana: Thonningia sanguine on experimentally induced liver injuries. Gen Pharmacol. 1999;32(6):661–7.

    CAS  PubMed  Google Scholar 

  21. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6.

    CAS  PubMed  Google Scholar 

  22. Mondal S, Chakraborty G, Gupta M, Muzumdar U. In vitro antioxidant activity of Diospyros malabarica kostel bark. Ind J Experimen Biol. 2006;44:39–44.

    Google Scholar 

  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic Biol Med. 1999;26(9–10):1231–7.

    CAS  PubMed  Google Scholar 

  24. Oyetayo FL, Akomolafe SF, Odeniyi IA. Effects of dietary supplementation of Chrysophyllum albidum fruit pulp powder on some biochemical parameters in a type 2 diabetes rat model. Vegetos. 2019;32:190–9. https://doi.org/10.1007/s42535-019-00022-7.

    Article  Google Scholar 

  25. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington DC: National Academies Press (US); 2011.

    Google Scholar 

  26. Adedara IA, Awogbindin IO, Anamelechi JP, Farombi EO. Garcinia kola seed ameliorates renal, hepatic, and testicular oxidative damage in streptozotocin-induced diabetic rats.Pharmaceutl biol. 2014:1–10 DOI: https://doi.org/10.3109/13880209.2014.937504

  27. Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with BCG. ClinChimActa. 1971;31:87–96.

    CAS  Google Scholar 

  28. Bartels H, Bohmer M. In vitro determination of Creatinine and urea. Clin Chem. 1972;2:37–193.

    Google Scholar 

  29. Weatherburn MW. Colorimetric methods for serum urea determination. Anal Chem. 1967;39:971–4.

    CAS  Google Scholar 

  30. Allain GC, Poon LS, Chan CS, Richmond W. Quantitative determination of cholesterol using enzymatic colorimetric method. Clin Chem. 1974;20:470–5.

    CAS  PubMed  Google Scholar 

  31. Jendrassik L, Grof P. In vitro determination of total and direct bilirubin. Biochemica. 1938;297:81.

    CAS  Google Scholar 

  32. Jacobs NJ, Van Denmark PJ. Determination of triglycerides. Arch BiochemBiophys. 1960;88:250–5.

    CAS  Google Scholar 

  33. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamicoxaloacetic and glutamicpyruvictransaminases. Am J Clin Pathol. 1957;28:56–63.

    CAS  PubMed  Google Scholar 

  34. Rec GSCC (DGKC). Colorimetric method for serum alkaline phosphatase determination. J Clin Chem ClinBiochem. 1972;10:182.

    Google Scholar 

  35. Ikewuchi CJ, Ikewuchi CC. Alteration of plasma lipid profiles and atherogenic indices by Stachytarphetajamaicensis L (Vahl). Boikemistri. 2009;21:71–7.

    Google Scholar 

  36. Takasaki Y. Serum lipid levels and factors affecting atherogenic index in Japanese children. J PhysiolAnthropol Appl Hum Sci. 2005;24:511–5.

    Google Scholar 

  37. Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949;177(2):751–66.

    CAS  PubMed  Google Scholar 

  38. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    CAS  PubMed  Google Scholar 

  39. Green LC, Wagner DA, Glogowski J, Skiper PL, Wishnock JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8.

    CAS  PubMed  Google Scholar 

  40. Brandstrup N, Kirk JE, Bruni C. The hexokinase and phosphogluco isomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol. 1957;12:166–71.

    CAS  PubMed  Google Scholar 

  41. Ellis HA, Kirkman HN. A colorimetric method for assay of erythrocytic glucose 6-phosphate dehydrogenase. Proc Soc Exp Biol Med. 1961;106:607–9.

    Google Scholar 

  42. Koide H, Oda T. Pathological occurrence of glucose 6-phosphatase in serum in liver diseases. ClinChimActa. 1959;4:554–61.

    CAS  Google Scholar 

  43. Gancedo JM, Gancedo C. Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol. 1971;76:132–8.

    CAS  Google Scholar 

  44. Avwioro OG. Histochemistry and tissue pathology, principle and techniques. Nigeria: Claverianum press; 2010.

    Google Scholar 

  45. Abshirini M, Mahaki B, Bagheri F, Siassi F, Koohdani F, Sotoudeh G. Higher intake of phytochemical-rich foods is inversely related to prediabetes: a case-control study. Int J Prev Med. 2018;9:64.

    PubMed  PubMed Central  Google Scholar 

  46. Wang PY, Fang JC, Gao ZH, Zhang C, Xie SY. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: a meta-analysis. J Diabetes Investig. 2016;7:56–69.

    PubMed  Google Scholar 

  47. Zhang Y-J, Gan R-Y, Li S, Zhou Y, Li A-N. Dong-Ping Xu and Hua-Bin Li Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases Molecules. 2015;20:21138–56. https://doi.org/10.3390/molecules201219753.

    Article  CAS  PubMed  Google Scholar 

  48. Lui RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American J ClinNutrit. 2003;78(3):517S–20S. https://doi.org/10.1093/ajcn/78.3.517S.

    Article  Google Scholar 

  49. Kwon YI, Apostolidis E, Kim YC, Shetty K. Health benefits of traditional corn, beans and pumpkin: in vitro studies for hyperglycemia and hypertension management. J Med Food. 2007;10:266–75.

    CAS  PubMed  Google Scholar 

  50. Karigidi KO, Olaiya CO.Curculigo pilosa mitigates against oxidative stress and structural derangements in pancreas and kidney of streptozotocin-induced diabetic rats Journal of Complementary and Integrative Medicine 2020; 20190217 https://doi.org/10.1515/jcim-2019-0217.

  51. Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK. Kong L et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review J TraditComplem Med. 2018;8:361–76.

    Google Scholar 

  52. Wahba NS, Shaban SF, Asmaa A, Kattaia A, Kandeel SA. Efficacy of zinc oxide nanoparticles in attenuating pancreatic damage in a rat model of streptozotocin-induced diabetes. UltrastructPathol, 2016. 2016;40(6):358–73. https://doi.org/10.1080/01913123.2016.1246499.

    Article  Google Scholar 

  53. Erejuwa OO, Nwobodo NN, Akpan JL, Okorie UA, Ezeonu CT, Ezeokpo BC, et al. Nigerian honey ameliorates hyperglycemia and dyslipidemia in Alloxan-induced diabetic rats. Nutrients. 2016;8:95.

    PubMed  PubMed Central  Google Scholar 

  54. Subbiah R, Kasiappan R, Karuran S, Sorimuthu S. Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin and Exp Pharmacol Physiol. 2006;33:232–7.

    Google Scholar 

  55. Nesto RW. Beyond low-density lipoprotein: addressing the atherogenic lipid triad in type 2 diabetes mellitus and the metabolic syndrome, am J Cardiovasc. Drugs. 2005;5:379–87.

    CAS  Google Scholar 

  56. Li W, Wang G, Lu X, Jiang Y, Xu L, Zhao X. Lycopene ameliorates renal function in rats with streptozotocin-induced diabetes. Int J Clin Exp Pathol. 2014;7(8):5008–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Halliwell B. Albumin: an important extracellular antioxidant? Biochem Pharmacol. 1988;37:569–71.

    CAS  PubMed  Google Scholar 

  58. Zhang WJ, Frei B. Albumin selectively inhibits TNF alpha-induced expression of vascular cell adhesion molecule-1 in human aortic endothelial cells. Cardiovasc Res. 2002;55:820–9.

    CAS  PubMed  Google Scholar 

  59. Zhang Y, Lu X, Hong J, Chao M, Gu W, Wang W, et al. Positive correlations of liver enzymes with metabolic syndrome including insulin resistance in newly diagnosed type 2 diabetes mellitus. Endocr. 2010;38:181–7.

    Google Scholar 

  60. Succurro E, Arturi F, Grembiale A, Iorio F, Fiorentino TV, Andreozzi F, et al. One-hour post-load plasma glucose levels are associated with elevated liver enzymes. Nutr Metab Cardiovasc Dis. 2011;21:713–8.

    CAS  PubMed  Google Scholar 

  61. Han N, Kyaw-Soe HH, Htet A. Determinants of Abnormal Liver Function Tests in Diabetes Patients in Myanmar. Internat J. Diab Res. 2012;1(3):36–41.

    Google Scholar 

  62. Chatila R, West AB. Hepatomegaly and abnormal liver tests due to glycogenesis in adults with diabetes. Med. 1996;75(6):327–33.

    CAS  Google Scholar 

  63. Soliman AM. Potential impact of Paracentrotuslividus extract on diabetic rat models induced by high fat diet/streptozotocin. The J Bas Appl Zool. 2016;77:8–20.

    Google Scholar 

  64. Chan KH, O'Connell RL, Sullivan DR, et al. Plasma total bilirubin levels predict amputation events in type 2 diabetes mellitus: the Fenofibrate intervention and event lowering in diabetes (FIELD) study. Diabetologia. 2013;56(4):724–36. https://doi.org/10.1007/s00125-012-2818-4.

    Article  CAS  PubMed  Google Scholar 

  65. Breimer LH, Mikhailidis DP. Is bilirubin a marker of vascular disease and/or cancer and is it a potential therapeutic target? CurrPharm Des. 2011;17:3644–55.

    CAS  Google Scholar 

  66. Kimm H, Yun JE, Jo J, Jee SH. Low serum bilirubin level as an independent predictor of stroke incidence: a prospective study in Korean men and women. Stroke; J cerebcirculat. 2009;40:3422–7.

    CAS  Google Scholar 

  67. Inoguchi T, Sasaki S, Kobayashi K, Takayanagi R, Yamada T. Relationship between Gilbert syndrome and prevalence of vascular complications in patients with diabetes. Jama. 2007;298:1398–400.

    CAS  PubMed  Google Scholar 

  68. Xie Z, Zeng X, Li X, Wu B, Shen G, Wu Q, et al. Curcumin attenuates oxidative stress in liver in type 1 diabetic rats. Open Life Sci. 2017;12:452–9.

    CAS  Google Scholar 

  69. Murunga AN, Miruka DO, Driver C, Nkomo FS, Cobongela SZZ, Owira PMO. Grapefruit derived flavonoid Naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model. PLoS ONE. 2016;11(4):e0153241. https://doi.org/10.1371/journal.pone.0153241.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Irudayaraj SS, Christudas S, Antony S, Duraipandiyan V, Abdullah AN, Ignacimuthu S. Protective effects of Ficuscarica leaves on glucose and lipids levels, carbohydrate metabolism enzymes and β-cells in type 2 diabetic rats. Pharma Biol. 2017;55(1):1074–81. https://doi.org/10.1080/13880209.2017.1279671.

    Article  Google Scholar 

  71. Hikino H, Kobayashi M, Suzuki Y, Konno C. Mechanisms of hypoglycemic activity of aconitan a, a glycan from Aconitum carmichaeli roots. J Ethnopharmacol. 1989;25:295–304.

    CAS  PubMed  Google Scholar 

  72. Sundaram R, Naresh R, Ranadevan R, Shanthi P, Sachdanandam P. Effect of iridoidglucoside on streptozotocin induced diabetic rats and its role in regulating carbohydrate metabolic enzymes. Eur J Pharmacol. 2012;674:460–7.

    CAS  PubMed  Google Scholar 

  73. Sankaranarayanan C, Ramajayam N, Pachaiappan P. Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats. Biomed Pharmacother. 2018;103:539–45.

    PubMed  Google Scholar 

  74. Saravanan G, Ponmurugan P, Deepa MA, Senthilkumar B. Modulatory effects of Diosgenin on attenuating the key enzymes activities of carbohydrate metabolism and glycogen content in Streptozotocin-induced diabetic rats. Can J Diabet. 2014;38:409–14.

    Google Scholar 

  75. Basha RH, Sankaranarayanan C. β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. ActaHistochemica. 2014;116:1469–79.

    CAS  Google Scholar 

  76. Kosuru R, Singh S. Pterostilbene ameliorates insulin sensitivity, glycemic control and oxidative stress in fructose-fed diabetic rats. Life Sci. 2017;182:112–21. https://doi.org/10.1016/j.lfs.2017.06.015.

    Article  CAS  PubMed  Google Scholar 

  77. Gang L, Guangxiang L, Yanfeng H, Fangfang T, Zhenhua W, Yourui S, Chengjun M, Honglun W Polyphenol Stilbenes from Fenugreek (Trigonella foenum graecum L.) Seeds Improve Insulin Sensitivity and MitochondrialFunction in 3T3-L1. Adipocytes. Oxid Med CellulLongev. 2018; https://doi.org/10.1155/2018 /7634362.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayode Olayele Karigidi.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karigidi, K.O., Akintimehin, E.S., Omoboyowa, D.A. et al. Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 19, 1173–1184 (2020). https://doi.org/10.1007/s40200-020-00618-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00618-w

Keywords

Navigation