Skip to main content
Log in

In vivo toxicity and biodistribution of intravenously administered antibiotic-functionalized gold nanoparticles

  • Research
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The utilization of engineered gold nanoparticles (GNPs) in biomedical applications is experiencing rapid growth owing to their reactive nature and remarkable flexibility. However, despite these advantages, concerns persist regarding their in vivo biocompatibility and cytotoxicity. This study aimed to assess the toxicity, biodistribution, and excretion pathways of GNPs functionalized with various antibiotics, namely, ciprofloxacin, levofloxacin, cefotaxime, and ceftriaxone, using a mouse model. Following intravenous administration, the nanostructures induced an increase in serum enzyme levels and histological abnormalities in the liver, indicating potential hepatotoxic effects. Analysis of organ distribution revealed accumulation primarily in the liver and spleen, with concentrations gradually decreasing 168-h post-administration. Fecal excretion was identified as the primary route of elimination, with a smaller portion excreted via urine. Among the different nanostructures evaluated, those functionalized with levofloxacin (LEV-NP) exhibited minimal organ toxicity and a high clearance rate. Additionally, LEV-NP, with a size of approximately 12 nm, demonstrated superior drug particle stability and lower red blood cell hemolytic activity compared to other nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 16 Nov 2022

  2. Ghosh S, Bornman C, Zafer MM (2021) Antimicrobial resistance threats in the emerging COVID-19 pandemic: where do we stand? J Infect Public Health 14:555–560. https://doi.org/10.1016/J.JIPH.2021.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rodríguez-Baño J, Rossolini GM, Schultsz C et al (2021) Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Trans R Soc Trop Med Hyg 115:1122–1129. https://doi.org/10.1093/trstmh/trab048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nawaz A, Ali SM, Rana NF et al (2021) Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: an in vivo assessment. Nanomaterials 11:3152. https://doi.org/10.3390/nano11113152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alshammari F, Alshammari B, Moin A et al (2021) Ceftriaxone mediated synthesized gold nanoparticles: a nano-therapeutic tool to target bacterial resistance. Pharmaceutics 13:1896. https://doi.org/10.3390/pharmaceutics13111896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patra JK, Das G, Fraceto LF et al (2018) (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 161(16):1–33. https://doi.org/10.1186/S12951-018-0392-8

    Article  Google Scholar 

  7. Sargazi S, Laraib U, Er S, Rahdar A, Hassanisaadi M, Zafar MN, Diez-Pascual and Bilal M, (2022) Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials 12(7):1102. https://doi.org/10.3390/nano12071102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siddique S, Chow JCL (2020) Gold nanoparticles for drug delivery and cancer therapy. Appl Sci 10:3824. https://doi.org/10.3390/app10113824

    Article  CAS  Google Scholar 

  9. Dreaden EC, Austin LA, MacKey MA, El-Sayed MA (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3:457–478. https://doi.org/10.4155/tde.12.21

    Article  CAS  PubMed  Google Scholar 

  10. Hussain MH, Fitrah N, Bakar A et al (2020) Synthesis of various size gold nanoparticles by chemical reduction method with different solvent polarity. Nanoscale Res Lett 15:1–10. https://doi.org/10.1186/s11671-020-03370-5

    Article  CAS  Google Scholar 

  11. Hammami I, Alabdallah NM, Jomaa Al A, Kamoun M (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ - Sci 33:101560. https://doi.org/10.1016/j.jksus.2021.101560

    Article  Google Scholar 

  12. Hagbani TA, Yadav H, Moin A, Lila ASA, Mehmood K, Alshammari F, Khan S, Khafagy ES, Hussain T, Rizvi SMD, Abdallah MH (2022) Enhancement of vancomycin potential against pathogenic bacterial strains via gold nano-formulations: a nano-antibiotic approach. Materials 15(3):1108. https://doi.org/10.3390/ma15031108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma D, Chaudhary A (2021) One pot synthesis of gentamicin conjugated gold nanoparticles as an efficient antibacterial agent. J Clust Sci 32:995–1002. https://doi.org/10.1007/s10876-020-01864-x

    Article  CAS  Google Scholar 

  14. Ali MRK, Panikkanvalappil SR, El-Sayed MA (2014) Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin. J Am Chem Soc 136:4464–4467. https://doi.org/10.1021/ja4124412

    Article  CAS  PubMed  Google Scholar 

  15. Khlebtsov N, Dykmana L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671. https://doi.org/10.1039/c0cs00018c

    Article  CAS  PubMed  Google Scholar 

  16. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res 12:2313–2333. https://doi.org/10.1007/s11051-010-9911-8

    Article  CAS  Google Scholar 

  17. Pan Y, Leifert A, Ruau D et al (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076. https://doi.org/10.1002/smll.200900466

    Article  CAS  PubMed  Google Scholar 

  18. Zhang XD, Wu HY, Wu D et al (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5:771–781. https://doi.org/10.2147/IJN.S8428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia YP, Ma BY, Wei XW, Qian ZY (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chinese Chem Lett 28:691–702. https://doi.org/10.1016/j.cclet.2017.01.021

    Article  CAS  Google Scholar 

  20. Sani A, Cao C, Cui D (2021) Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Reports 26:100991. https://doi.org/10.1016/j.bbrep.2021.100991

    Article  CAS  Google Scholar 

  21. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478. https://doi.org/10.1038/nnano.2007.223

    Article  CAS  PubMed  Google Scholar 

  22. Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571. https://doi.org/10.1016/j.copbio.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  23. Al Hagbani T, Rizvi SMD, Hussain T et al (2022) Cefotaxime Mediated synthesis of gold nanoparticles: characterization and antibacterial activity. Polymers (Basel) 14:771. https://doi.org/10.3390/polym14040771

    Article  CAS  PubMed  Google Scholar 

  24. Pradeepa VSM, Mutalik S et al (2016) Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sci 153:171–179. https://doi.org/10.1016/j.lfs.2016.04.022

    Article  CAS  PubMed  Google Scholar 

  25. Aseichev AV, Azizova OA, Beckman EM et al (2014) Effects of gold nanoparticles on erythrocyte hemolysis. Bull Exp Biol Med 156:495–498. https://doi.org/10.1007/s10517-014-2383-6

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM (2013) In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PloS one 8(2):e58208. https://doi.org/10.1371/journal.pone.0058208

  27. Bednarski M, Dudek M, Knutelska J et al (2015) The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: in vivo studies. Pharmacol Reports 67:405–409. https://doi.org/10.1016/j.pharep.2014.10.019

    Article  CAS  Google Scholar 

  28. Xia Q, Huang J, Feng Q et al (2019) Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine 14:6957–6970. https://doi.org/10.2147/IJN.S214008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paciotti GF, Myer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183. https://doi.org/10.1080/10717540490433895

    Article  CAS  PubMed  Google Scholar 

  30. Bergen JM, Von Recum HA, Goodman TT et al (2006) Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci 6(7):506–516. https://doi.org/10.1002/mabi.200600075

    Article  CAS  PubMed  Google Scholar 

  31. Zhang G, Yang Z, Lu W et al (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936. https://doi.org/10.1016/j.biomaterials.2008.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen H, Dorrigan A, Saad S et al (2013) In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS ONE 8:e58208. https://doi.org/10.1371/JOURNAL.PONE.0058208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zuluaga F, Jones LM (2006) Protecting indigenous rights in Colombia. Peace Rev 18:55–61. https://doi.org/10.1186/1471-2334-6-55

    Article  CAS  Google Scholar 

  34. Fliedner TM (2006) Nuclear terrorism: the role of hematology in coping with its health consequences. Curr Opin Hematol 13:436–444. https://doi.org/10.1097/01.moh.0000245696.77758.e6

    Article  PubMed  Google Scholar 

  35. Ankamwar B (2012) Size and shape effect on biomedical applications of nanomaterials. In: Hudak R, Penhaker M, Majernik J (eds) In: Biomedical engineering - technical applications in medicine. IntechOpen, pp 93–114

    Google Scholar 

  36. Ben HM, Jeannot K, Spadavecchia J (2019) Novel synthesis and characterization of doxycycline-loaded gold nanoparticles: the golden doxycycline for antibacterial applications. Part Part Syst Charact 36:1800395. https://doi.org/10.1002/ppsc.201800395

    Article  CAS  Google Scholar 

  37. Shaikh S, Rizvi SMD, Shakil S et al (2017) Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-producing bacterial pathogens. J Cell Biochem 118:2802–2808. https://doi.org/10.1002/JCB.25929

    Article  CAS  PubMed  Google Scholar 

  38. Mohsen E, El-Borady OM, Mohamed MB, Fahim IS (2020) Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J Radiat Res Appl Sci 13:416–425. https://doi.org/10.1080/16878507.2020.1748941

    Article  CAS  Google Scholar 

  39. Moore TL, Rodriguez-Lorenzo L, Hirsch V et al (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305. https://doi.org/10.1039/c4cs00487f

    Article  CAS  PubMed  Google Scholar 

  40. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop J Pharm Res 12:265–273. https://doi.org/10.4314/tjpr.v12i2.20

    Article  CAS  Google Scholar 

  41. Tantra R, Schulze P, Quincey P (2010) Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 8:279–285. https://doi.org/10.1016/j.partic.2010.01.003

    Article  CAS  Google Scholar 

  42. He Z, Li C, Zhang X et al (2018) The effects of gold nanoparticles on the human blood functions. Artif Cells, Nanomed Biotechnol 46:720–726. https://doi.org/10.1080/21691401.2018.1468769

    Article  CAS  PubMed  Google Scholar 

  43. Kattumuri V, Katti K, Bhaskaran S et al (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341. https://doi.org/10.1002/smll.200600427

    Article  CAS  PubMed  Google Scholar 

  44. Lartigue L, Wilhelm C, Servais J et al (2012) Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano 6:2665–2678. https://doi.org/10.1021/nn300060u

    Article  CAS  PubMed  Google Scholar 

  45. Saleh HM, Soliman OA, Elshazly MO et al (2016) Acute hematologic, hepatologic, and nephrologic changes after intraperitoneal injections of 18 nm gold nanoparticles in hamsters. Int J Nanomedicine 11:2505–2513. https://doi.org/10.2147/IJN.S102919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864. https://doi.org/10.1007/s11671-009-9334-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M et al (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomed Nanotechnol, Biol Med 14:1–12. https://doi.org/10.1016/j.nano.2017.08.011

    Article  CAS  Google Scholar 

  48. Yao Y, Zang Y, Qu J et al (2019) The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomedicine 14:8787–8804. https://doi.org/10.2147/IJN.S212907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruhl CE, Everhart JE (2012) Upper limits of normal for alanine aminotransferase activity in the United States population. Hepatology 55:447–454. https://doi.org/10.1002/hep.24725

    Article  CAS  PubMed  Google Scholar 

  50. Abdelhalim MAK, Abdelmottaleb Moussa SA (2013) The gold nanoparticle size and exposure duration effect on the liver and kidney function of rats: in vivo. Saudi J Biol Sci 20:177–181. https://doi.org/10.1016/j.sjbs.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ibrahim KE, Al-Mutary MG, Bakhiet AO, Khan HA (2018) Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules 23:1848. https://doi.org/10.3390/molecules23081848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cho WS, Cho M, Jeong J et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24. https://doi.org/10.1016/j.taap.2008.12.023

    Article  CAS  PubMed  Google Scholar 

  53. Pannerselvam B, Devanathadesikan V, Alagumuthu TS et al (2020) Assessment of in-vivo biocompatibility evaluation of phytogenic gold nanoparticles on Wistar albino male rats. IET Nanobiotechnol 14:314–324. https://doi.org/10.1049/iet-nbt.2019.0116

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yahyaei B, Nouri M, Bakherad S et al (2019) Effects of biologically produced gold nanoparticles: toxicity assessment in different rat organs after intraperitoneal injection. AMB Express 9:1–12. https://doi.org/10.1186/s13568-019-0762-0

    Article  CAS  Google Scholar 

  55. Isoda K, Tanaka A, Fuzimori C et al (2020) Toxicity of gold nanoparticles in mice due to nanoparticle/drug interaction induces acute kidney damage. Nanoscale Res Lett 15:1–8.15. https://doi.org/10.1186/s11671-020-03371-4

  56. Balasubramanian SK, Jittiwat J, Manikandan J et al (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042. https://doi.org/10.1016/j.biomaterials.2009.11.079

    Article  CAS  PubMed  Google Scholar 

  57. De Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919. https://doi.org/10.1016/j.biomaterials.2007.12.037

    Article  CAS  PubMed  Google Scholar 

  58. Niidome T, Yamagata M, Okamoto Y et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347. https://doi.org/10.1016/j.jconrel.2006.06.017

    Article  CAS  PubMed  Google Scholar 

  59. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surfaces B Biointerfaces 66:274–280. https://doi.org/10.1016/j.colsurfb.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  60. Sadauskas E, Wallin H, Stoltenberg M et al (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10. https://doi.org/10.1186/1743-8977-4-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fent GM, Casteel SW, Kim DY et al (2009) Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomed Nanotechnol, Biol Med 5:128–135. https://doi.org/10.1016/j.nano.2009.01.007

    Article  CAS  Google Scholar 

  62. Yoo J-W, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307. https://doi.org/10.2174/138161210791920496

    Article  CAS  PubMed  Google Scholar 

  63. Goel R, Shah N, Visaria R et al (2009) Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system. Nanomedicine 4:401–410. https://doi.org/10.2217/nnm.09.21

    Article  CAS  PubMed  Google Scholar 

  64. Liu X, Huang N, Li H et al (2013) Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 29:9138–9148. https://doi.org/10.1021/la401556k

    Article  CAS  PubMed  Google Scholar 

  65. Bruckman MA, Randolph LN, VanMeter A et al (2014) Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 449:163–173. https://doi.org/10.1016/j.virol.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  66. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253. https://doi.org/10.1259/bjr/13169882

    Article  CAS  PubMed  Google Scholar 

  67. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916. https://doi.org/10.1155/2013/942916

  68. Li X, Wang B, Zhou S et al (2020) Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J Nanobiotechnology 18:1–16. https://doi.org/10.1186/s12951-020-00599-1

    Article  CAS  Google Scholar 

  69. Takeuchi I, Nobata S, Oiri N et al (2017) Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: effects of particle size. Biomed Mater Eng 28:315–323. https://doi.org/10.3233/BME-171677

    Article  CAS  PubMed  Google Scholar 

  70. Abdelhalim MAK, Jarrar BM (2011) The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity. Lipids Health Dis 10:1–6. https://doi.org/10.1186/1476-511X-10-147/FIGURES/8

    Article  Google Scholar 

  71. Kumar R, Roy I, Ohulchanskky TY et al (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4:699–708. https://doi.org/10.1021/nn901146y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu M, Zheng J (2015) Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9:6655–6674. https://doi.org/10.1021/acsnano.5b01320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou Y, Kong Y, Kundu S et al (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnology 10:1–9. https://doi.org/10.1186/1477-3155-10-19

    Article  CAS  Google Scholar 

  74. Shamaila S, Zafar N, Riaz S et al (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6(4):71. https://doi.org/10.3390/nano6040071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rabiee N, Ahmadi S, Akhavan O, Luque R (2022) Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials 15(5):1799. https://doi.org/10.3390/ma15051799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fan Y, Pauer AC, Gonzales AA, Fenniri H (2019) Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes. Int J Nanomedicine 14:7281–7289. https://doi.org/10.2147/IJN.S209756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jana SK, Gucchait A, Paul S et al (2021) Virstatin-conjugated gold nanoparticle with enhanced antimicrobial activity against the Vibrio cholerae El Tor biotype. ACS Appl Bio Mater 4:3089–3100. https://doi.org/10.1021/acsabm.0c01483

    Article  CAS  PubMed  Google Scholar 

  78. Payne JN, Waghwani HK, Connor MG et al (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:607. https://doi.org/10.3389/fmicb.2016.00607

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fuller MA, Carey A, Whiley H et al (2019) Nanoparticles in an antibiotic-loaded nanomesh for drug delivery. RSC Adv 9:30064–30070. https://doi.org/10.1039/c9ra06398f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The part of the study was supported by the Board of Research in Nuclear Sciences, Government of India (35/14/04/2014-BRNS).

Author information

Authors and Affiliations

Authors

Contributions

Pradeepa carried out experiments, implementation, and methodology. He is involved in conceptualization, formal analysis, investigation, data collection, and writing of the original draft and performed statistical analysis. Rashmi KV is involved in writing of the original draft, formal analysis, supplementary material, data curation, and investigation. Darshini S. M is involved in writing of the original draft, editing the original draft, and supplementary material. Srinivas Mutalik contributed the resources and helped in supervision. Manjunatha B.K encouraged to investigate the designed experiments and supervised the finding of this work. Anil Kumar H.S helped to design the experiments and formal analysis. Mukunda S supported to develop methodology and encouraged to develop new inputs. Vidya S.M designed and planned the experiments and supervised in each steps and phases. She provided conceptualization, methodology, data curation, and formal analysis. She contributed to the interpretation of the results and verified the analytical methods. All authors reviewed the manuscript.

Corresponding author

Correspondence to Vidya Shimoga Muddappa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

No conflicts of interest are associated in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeepa, Vasappa, R.K., Mohan, D.S. et al. In vivo toxicity and biodistribution of intravenously administered antibiotic-functionalized gold nanoparticles. Gold Bull 56, 209–220 (2023). https://doi.org/10.1007/s13404-024-00343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-024-00343-9

Keywords

Navigation