Skip to main content

Advertisement

Log in

Gold nanoparticle-based drug nanocarriers as a targeted drug delivery system platform for cancer therapeutics: a systematic review

  • Review
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Cancer was the world’s second major cause of death. Several treatments were available, including chemotherapy, radiotherapy, immunotherapy, and surgery. However, they are restricted due to their risk to normal cells, their ability to destroy the immune system, and conferring increased risk of secondary cancer development. Nanotechnology was extensively researched and used in cancer treatment because nanoparticles could play an essential role in drug delivery. Furthermore, nanoparticle drug delivery systems have been shown to help overcome cancer-related drug resistance. Gold nanoparticles have unique physical, chemical, and biological properties, making them suitable candidates for non-toxic drug carriers. Because of their nanorange size, surface modifications of gold nanoparticles could improve their stability, minimize nanoparticle aggregation, and enhance attachment to anti-cancer agents and target cells, further increasing their ability to penetrate cell membranes and reduce toxicity. This review aims to discuss the current research in targeting drug delivery for anti-cancer agents using gold nanoparticles. By conducting a literature search through the PubMed and Scopus database up to April 2022 using the term gold nanoparticles, targeted drug delivery, chemotherapy, gene therapy, and cancer, this review summarized report on the implementation of gold nanoparticles for targeted drug-delivery systems for cancer therapeutics. The targeting ligands included folic acid, aptamers, hyaluronic acid, glutathione, peptides, and antibodies. According to the findings of studies, implementing gold nanoparticles as nanocarriers significantly improves drug delivery of anti-cancer agents to cancer cells without affecting other untargeted cells. Enhanced cell uptake, increase in drug toxicity, inhibition of tumor growth, and selective drug target are also reported to be the advantages of gold nanoparticle-based targeted drug delivery carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Nagai H, Kim YH (2017) Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 9:448–451. https://doi.org/10.21037/jtd.2017.02.75

    Article  Google Scholar 

  2. Hossen S, Hossain MK, Basher MK et al (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18. https://doi.org/10.1016/j.jare.2018.06.005

    Article  CAS  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  4. Global Cancer Observatory (2022) Cancer statistics. WHO https://gco.iarc.fr/. Accessed 11 May 2022

    Google Scholar 

  5. Alam A, Farooq U, Singh R et al (2018) Chemotherapy treatment and strategy schemes: a review. J Toxicol 2:1–5. https://doi.org/10.19080/oajt.2018.02.555600

    Article  Google Scholar 

  6. Olivier T, Haslam A, Prasad V (2021) Anticancer drugs approved by the US Food and Drug Administration from 2009 to 2020 according to their mechanism of action. JAMA Netw Open 4:8–15. https://doi.org/10.1001/jamanetworkopen.2021.38793

    Article  Google Scholar 

  7. Sun J, Wei Q, Zhou Y et al (2017) A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol 11:27–43. https://doi.org/10.1186/s12918-017-0464-7

    Article  CAS  Google Scholar 

  8. Aslam MS, Naveed S, Ahmed A et al (2014) Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther 05:817–822. https://doi.org/10.4236/jct.2014.58089

    Article  Google Scholar 

  9. Pan ST, Li ZL, He ZX et al (2016) Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol 43:723–737. https://doi.org/10.1111/1440-1681.12581

    Article  CAS  Google Scholar 

  10. Jain V, Jain S, Mahajan SC (2015) Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Curr Drug Deliv 12:177–191. https://doi.org/10.2174/1567201811666140822112516

    Article  CAS  Google Scholar 

  11. Amjad M, Chidharla A, Kasi A (2022) Cancer chemotherapy. In: Stat Pearls. Treasure Island. StatPearls Publishing

    Google Scholar 

  12. Nurgali K, Jagoe RT, Abalo R (2018) Editorial: Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol 9:1–3. https://doi.org/10.3389/fphar.2018.00245

    Article  CAS  Google Scholar 

  13. Gillet J-P, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. In: Zhou J (ed) Multi-Drug Resistance in Cancer. Humana Press, Totowa, NJ, pp 47–76

    Chapter  Google Scholar 

  14. Tewabe A, Abate A, Tamrie M et al (2021) Targeted drug delivery — from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc 14:1711–1724. https://doi.org/10.2147/JMDH.S313968

    Article  Google Scholar 

  15. Pucci C, Martinelli C, Ciofani G (2019) Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 13. https://doi.org/10.3332/ecancer.2019.961

  16. Atlihan-Gundogdu E, Ilem-Ozdemir D, Ekinci M et al (2020) Recent developments in cancer therapy and diagnosis. J Pharm Investig 50:349–361. https://doi.org/10.1007/s40005-020-00473-0

    Article  Google Scholar 

  17. Hammami I, Alabdallah NM, Al JA, Kamoun M (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ - Sci 33:1–10. https://doi.org/10.1016/j.jksus.2021.101560

    Article  Google Scholar 

  18. Yeh Y, Creran B, Rotello V (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 5:1871–1880. https://doi.org/10.1090/noti1430

    Article  Google Scholar 

  19. Go G, Lee CS, Yoon YM et al (2021) Prpc aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. Int J Mol Sci 22:1–16. https://doi.org/10.3390/ijms22041976

    Article  CAS  Google Scholar 

  20. Yao Y, Zhou Y, Liu L et al (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:1–14. https://doi.org/10.3389/fmolb.2020.00193

    Article  CAS  Google Scholar 

  21. Bazak R, Houri M, El Achy S et al (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784. https://doi.org/10.1007/s00432-014-1767-3

    Article  CAS  Google Scholar 

  22. Zhang R, Kiessling F, Lammers T, Pallares RM (2023) Clinical translation of gold nanoparticles. Drug Deliv Transl Res 13:378–385. https://doi.org/10.1007/s13346-022-01232-4

    Article  CAS  Google Scholar 

  23. Libutti SK, Paciotti GF, Byrnes AA et al (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16:6139–6149. https://doi.org/10.1158/1078-0432.CCR-10-0978

    Article  CAS  Google Scholar 

  24. Borker S, Pokharkar V (2018) Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: an insight into mechanism of cellular uptake. Artif Cells, Nanomedicine Biotechnol 46:826–835. https://doi.org/10.1080/21691401.2018.1470525

    Article  CAS  Google Scholar 

  25. Corti A, Sacchi A, Gasparri AM et al (2021) Enhancement of doxorubicin anti-cancer activity by vascular targeting using IsoDGR/cytokine-coated nanogold. J Nanobiotechnology 19:1–13. https://doi.org/10.1186/s12951-021-00871-y

    Article  CAS  Google Scholar 

  26. Saber MM, Bahrainian S, Dinarvand R, Atyabi F (2017) Targeted drug delivery of sunitinib malate to tumor blood vessels by cRGD-chiotosan-gold nanoparticles. Int J Pharm 517:269–278. https://doi.org/10.1016/j.ijpharm.2016.12.016

    Article  CAS  Google Scholar 

  27. Wang X, Xiong T, Cui M et al (2021) A novel targeted co-delivery nanosystem for enhanced ovarian cancer treatment via multidrug resistance reversion and mTOR-mediated signaling pathway. J Nanobiotechnology 19:1–18. https://doi.org/10.1186/s12951-021-01139-1

    Article  CAS  Google Scholar 

  28. Kumar CS, Raja MD, Sundar DS et al (2015) Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohydr Polym 128:63–74. https://doi.org/10.1016/j.carbpol.2015.04.010

    Article  CAS  Google Scholar 

  29. Li YF, Zhang HT, Xin L (2018) Hyaluronic acid-modified polyamidoamine dendrimer G5-entrapped gold nanoparticles delivering METase gene inhibits gastric tumor growth via targeting CD44+ gastric cancer cells. J Cancer Res Clin Oncol 144:1463–1473. https://doi.org/10.1007/s00432-018-2678-5

    Article  CAS  Google Scholar 

  30. Lin CM, Kao WC, Yeh CA et al (2015) Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells. Nanotechnology 26:105101. https://doi.org/10.1088/0957-4484/26/10/105101

    Article  CAS  Google Scholar 

  31. Cova E, Pandolfi L, Colombo M et al (2019) Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: an in vitro study. Int J Nanomedicine 14:773–785. https://doi.org/10.2147/IJN.S186344

    Article  CAS  Google Scholar 

  32. Renner AM, Ilyas S, Schlößer HA et al (2020) Receptor-mediated in vivo targeting of breast cancer cells with 17α-ethynylestradiol-conjugated silica-coated gold nanoparticles. Langmuir 36:14819–14828. https://doi.org/10.1021/acs.langmuir.0c02820

    Article  CAS  Google Scholar 

  33. Xie R, Ruan S, Liu J et al (2021) Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials 275:120891. https://doi.org/10.1016/j.biomaterials.2021.120891

    Article  CAS  Google Scholar 

  34. Li W, Zhao X, Du B et al (2016) Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Sci Rep 6:1–11. https://doi.org/10.1038/srep30619

    Article  CAS  Google Scholar 

  35. Liszbinski RB, Romagnoli GG, Gorgulho CM et al (2020) Anti-EGFR-coated gold nanoparticles in vitro carry 5-fluorouracil to colorectal cancer cells. Materials 13:375. https://doi.org/10.3390/ma13020375

    Article  CAS  Google Scholar 

  36. Fernandes AR, Jesus J, Martins P et al (2017) Multifunctional gold-nanoparticles: a nanovectorization tool for the targeted delivery of novel chemotherapeutic agents. J Control Release 245:52–61. https://doi.org/10.1016/j.jconrel.2016.11.021

    Article  CAS  Google Scholar 

  37. Patra CR, Bhattacharya R, Wang E et al (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978. https://doi.org/10.1158/0008-5472.CAN-07-6102

    Article  CAS  Google Scholar 

  38. Yallappa S, Manjanna J, Dhananjaya BL et al (2015) Phytosynthesis of gold nanoparticles using Mappia foetida leaves extract and their conjugation with folic acid for delivery of doxorubicin to cancer cells. J Mater Sci Mater Med 26:1–12. https://doi.org/10.1007/s10856-015-5567-3

    Article  CAS  Google Scholar 

  39. Dey S, Sherly MCD, Rekha MR, Sreenivasan K (2016) Alginate stabilized gold nanoparticle as multidrug carrier: evaluation of cellular interactions and hemolytic potential. Carbohydr Polym 136:71–80. https://doi.org/10.1016/j.carbpol.2015.09.016

    Article  CAS  Google Scholar 

  40. Mahalunkar S, Yadav AS, Gorain M et al (2019) Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int J Nanomedicine 14:8285–8302. https://doi.org/10.2147/IJN.S215142

    Article  CAS  Google Scholar 

  41. Thambiraj S, Vijayalakshmi R, Ravi Shankaran D (2021) An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer. Sci Rep 11:1–17. https://doi.org/10.1038/s41598-020-80529-1

    Article  CAS  Google Scholar 

  42. Liaskoni A, Angelopoulou A, Voulgari E et al (2018) Paclitaxel controlled delivery using a pH-responsive functional-AuNP/block-copolymer vesicular nanocarrier composite system. Eur J Pharm Sci 117:177–186. https://doi.org/10.1016/j.ejps.2018.02.021

    Article  CAS  Google Scholar 

  43. Aguilar LE, Chalony C, Kumar D et al (2021) Phenol-boronic surface functionalization of gold nanoparticles; to induce ROS damage while inhibiting the survival mechanisms of cancer cells. Int J Pharm 596:120267. https://doi.org/10.1016/j.ijpharm.2021.120267

    Article  CAS  Google Scholar 

  44. Ngernyuang N, Seubwai W, Daduang S et al (2016) Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent. Mater Sci Eng C 60:411–415. https://doi.org/10.1016/j.msec.2015.11.062

    Article  CAS  Google Scholar 

  45. Yucel O, Sengelen A, Emik S et al (2020) Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. Nanotechnology 231:355101

    Article  Google Scholar 

  46. Ghorbani M, Hamishehkar H (2017) Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid)) shell: a novel platform for targeting of anticancer agent. Mater Sci Eng C 81:561–570. https://doi.org/10.1016/j.msec.2017.08.021

    Article  CAS  Google Scholar 

  47. Fan L, Yang Q, Tan J et al (2015) Dual loading miR-218 mimics and temozolomide using AuCOOH@FA-CS drug delivery system: promising targeted anti-tumor drug delivery system with sequential release functions. J Exp Clin Cancer Res 34:1–9. https://doi.org/10.1186/s13046-015-0216-8

    Article  CAS  Google Scholar 

  48. Akinyelu J, Singh M (2017) Chitosan stabilized gold-folate-poly(lactide-co-glycolide) nanoplexes facilitate efficient gene delivery in hepatic and breast cancer cells. J Nanosci Nanotechnol 18:4478–4486. https://doi.org/10.1166/jnn.2018.15286

    Article  CAS  Google Scholar 

  49. Mbatha LS, Singh M (2018) Starburst poly(amidoamine) dendrimer grafted gold nanoparticles as a scaffold for folic acid-targeted plasmid DNA delivery in vitro. J Nanosci Nanotechnol 19:1959–1970. https://doi.org/10.1166/jnn.2019.15798

    Article  CAS  Google Scholar 

  50. Joseph C, Daniels A, Singh S, Singh M (2022) Histidine-tagged folate-targeted gold nanoparticles for enhanced transgene expression in breast cancer cells in vitro. Pharmaceutics 14:1–20. https://doi.org/10.3390/pharmaceutics14010053

    Article  CAS  Google Scholar 

  51. Ghorbani M, Bigdeli B, Jalili-baleh L et al (2018) Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold-iron oxide nanocomposites: a pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur J Pharm Sci 114:175–188. https://doi.org/10.1016/j.ejps.2017.12.008

    Article  CAS  Google Scholar 

  52. Jabir M, Sahib UI, Taqi Z et al (2020) Linalool-loaded glutathione-modified gold nanoparticles conjugated with CALNN peptide as apoptosis inducer and NF-κB translocation inhibitor in SKOV-3 cell line. Int J Nanomedicine 15:9025–9047. https://doi.org/10.2147/IJN.S276714

    Article  CAS  Google Scholar 

  53. Kotcherlakota R, Srinivasan DJ, Mukherjee S et al (2017) Engineered fusion protein-loaded gold nanocarriers for targeted co-delivery of doxorubicin and erbB2-siRNA in human epidermal growth factor receptor-2+ ovarian cancer. J Mater Chem B 5:7082–7098. https://doi.org/10.1039/c7tb01587a

    Article  CAS  Google Scholar 

  54. Zhang C, Zhang F, Han M et al (2020) Co-delivery of 5-fluorodeoxyuridine and doxorubicin via gold nanoparticle equipped with affibody-DNA hybrid strands for targeted synergistic chemotherapy of HER2 overexpressing breast cancer. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-79125-0

    Article  CAS  Google Scholar 

  55. Spadavecchia J, Movia D, Moore C et al (2016) Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. Int J Nanomedicine 11:791–822. https://doi.org/10.2147/IJN.S97476

    Article  CAS  Google Scholar 

  56. Oladimeji O, Akinyelu J, Daniels A, Singh M (2021) Modified gold nanoparticles for efficient delivery of betulinic acid to cancer cell mitochondria. Int J Mol Sci 22:1–24. https://doi.org/10.3390/ijms22105072

    Article  CAS  Google Scholar 

  57. Oladimeji O, Akinyelu J, Singh M (2020) Co-polymer functionalised gold nanoparticles show efficient mitochondrial targeted drug delivery in cervical carcinoma cells. J Biomed Nanotechnol 16:853–866. https://doi.org/10.1166/jbn.2020.2930

    Article  CAS  Google Scholar 

  58. Shen Y, Xia Y, Yang E et al (2020) A polyoxyethylene sorbitan oleate modified hollow gold nanoparticle system to escape macrophage phagocytosis designed for triple combination lung cancer therapy via LDL-R mediated endocytosis. Drug Deliv 27:1342–1359. https://doi.org/10.1080/10717544.2020.1822459

    Article  CAS  Google Scholar 

  59. Ruan S, Yuan M, Zhang L et al (2015) Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–435. https://doi.org/10.1016/j.biomaterials.2014.10.007

    Article  CAS  Google Scholar 

  60. Khademi Z, Lavaee P, Ramezani M et al (2020) Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr Polym 248:116735. https://doi.org/10.1016/j.carbpol.2020.116735

    Article  CAS  Google Scholar 

  61. Baneshi M, Dadfarnia S, Shabani AMH et al (2019) A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int J Pharm 564:145–152. https://doi.org/10.1016/j.ijpharm.2019.04.025

    Article  CAS  Google Scholar 

  62. Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang MH (2021) pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohydr Polym 262:117907. https://doi.org/10.1016/j.carbpol.2021.117907

    Article  CAS  Google Scholar 

  63. Kardani A, Yaghoobi H, Alibakhshi A, Khatami M (2020) Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer. J Cell Physiol 235:6887–6895. https://doi.org/10.1002/jcp.29584

    Article  CAS  Google Scholar 

  64. Kumar A, Huo S, Zhang X et al (2014) Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano 8:4205–4220. https://doi.org/10.1021/nn500152u

    Article  CAS  Google Scholar 

  65. Pal K, Al-suraih F, Gonzalez-Rodriguez R et al (2017) Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale 9:15622–15634. https://doi.org/10.1039/c7nr03172f

    Article  CAS  Google Scholar 

  66. Wang RH, Bai J, Deng J et al (2017) TAT-modified gold nanoparticle carrier with enhanced anticancer activity and size effect on overcoming multidrug resistance. ACS Appl Mater Interfaces 9:5828–5837. https://doi.org/10.1021/acsami.6b15200

    Article  CAS  Google Scholar 

  67. Amreddy N, Muralidharan R, Babu A et al (2015) Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int J Nanomedicine 10:6773–6788. https://doi.org/10.2147/IJN.S93237

    Article  CAS  Google Scholar 

  68. Taghdisi SM, Danesh NM, Lavaee P et al (2016) Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater Sci Eng C 61:753–761. https://doi.org/10.1016/j.msec.2016.01.009

    Article  CAS  Google Scholar 

  69. Danesh NM, Lavaee P, Ramezani M et al (2015) Targeted and controlled release delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer-modified gold nanoparticles. Int J Pharm 489:311–317. https://doi.org/10.1016/j.ijpharm.2015.04.072

    Article  CAS  Google Scholar 

  70. Manju S, Sreenivasan K (2012) Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci 368:144–151. https://doi.org/10.1016/j.jcis.2011.11.024

    Article  CAS  Google Scholar 

  71. Attia MF, Anton N, Wallyn J et al (2019) An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 71:1185–1198. https://doi.org/10.1111/jphp.13098

    Article  CAS  Google Scholar 

  72. Wu J (2021) The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med 11:771. https://doi.org/10.3390/jpm11080771

    Article  Google Scholar 

  73. Clemons TD, Singh R, Sorolla A et al (2018) Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir 34:15343–15349. https://doi.org/10.1021/acs.langmuir.8b02946

    Article  CAS  Google Scholar 

  74. Kobayashi H, Watanabe R, Choyke PL (2014) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4:81–89. https://doi.org/10.7150/thno.7193

    Article  CAS  Google Scholar 

  75. Subhan MA, Yalamarty SSK, Filipczak N et al (2021) Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 11:571. https://doi.org/10.3390/jpm11060571

    Article  Google Scholar 

  76. Ramalho MJ, Loureiro JA, Coelho MAN, Pereira MC (2022) Transferrin receptor-targeted nanocarriers: overcoming barriers to treat glioblastoma. Pharmaceutics 14:279. https://doi.org/10.3390/pharmaceutics14020279

    Article  CAS  Google Scholar 

  77. Choudhury H, Pandey M, Chin PX et al (2018) Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res 8:1545–1563. https://doi.org/10.1007/s13346-018-0552-2

    Article  CAS  Google Scholar 

  78. Muhamad N, Plengsuriyakarn T, Na-Bangchang K (2018) Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 13:3921–3935. https://doi.org/10.2147/IJN.S165210

    Article  CAS  Google Scholar 

  79. Bajracharya R, Song JG, Patil BR et al (2022) Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 29:1959–1970. https://doi.org/10.1080/10717544.2022.2089296

    Article  CAS  Google Scholar 

  80. Nimjee SM, White RR, Becker RC, Sullenger BA (2017) Aptamers as therapeutics. Annu Rev Pharmacol Toxicol 06:61–79. https://doi.org/10.1146/annurev-pharmtox-010716-104558.Aptamers

    Article  Google Scholar 

  81. Ray P, White RR (2010) Aptamers for targeted drug delivery. Pharmaceuticals 3:1761–1778. https://doi.org/10.3390/ph3061761

    Article  CAS  Google Scholar 

  82. Castle AR, Gill AC (2017) Physiological functions of the cellular prion protein. Front Mol Biosci 4:1–25. https://doi.org/10.3389/fmolb.2017.00019

    Article  CAS  Google Scholar 

  83. Fernández M, Javaid F, Chudasama V (2018) Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci 9:790–810. https://doi.org/10.1039/c7sc04004k

    Article  CAS  Google Scholar 

  84. Wong PT, Choi SK (2015) Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev 115:3388–3432. https://doi.org/10.1021/cr5004634

    Article  CAS  Google Scholar 

  85. Yu T, Li Y, Gu X, Li Q (2020) Development of a hyaluronic acid-based nanocarrier incorporating doxorubicin and cisplatin as a pH-sensitive and CD44-targeted anti-breast cancer drug delivery system. Front Pharmacol 11:1–11. https://doi.org/10.3389/fphar.2020.532457

    Article  CAS  Google Scholar 

  86. Luo Z, Dai Y, Gao H (2019) Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B 9:1099–1112. https://doi.org/10.1016/j.apsb.2019.06.004

    Article  Google Scholar 

Download references

Funding

This study was supported by Riset dan Inovasi untuk Indonesia Maju (RIIM), the National Research and Innovation Agency (BRIN), Indonesia under grant number 82/II.7/HK/2022 to A’liyatur Rosyidah.

Author information

Authors and Affiliations

Authors

Contributions

A. R.: writing the article, conceptualization of the idea, and analysis. S. K.: writing the article, conceptualization of the idea. W. I. Y.: literature data collection and screening collected material. A. W. M.: scientific English review. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A’liyatur Rosyidah.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosyidah, A., Kerdtoob, S., Yudhistyra, W.I. et al. Gold nanoparticle-based drug nanocarriers as a targeted drug delivery system platform for cancer therapeutics: a systematic review. Gold Bull 56, 121–134 (2023). https://doi.org/10.1007/s13404-023-00331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-023-00331-5

Keywords

Navigation