Skip to main content

Advertisement

Log in

Gold nanoparticles with amyloid-β reduce neurocell cytotoxicity for the treatment and care of Alzheimer’s disease therapy

  • Research
  • Published:
Gold Bulletin Aims and scope Submit manuscript

A Correction to this article was published on 24 July 2023

This article has been updated

Abstract

Protein oligomerization contributes to Alzheimer’s disease development (AD). A nanoparticle that can speed up the oligomerization of proteins is generally considered harmful. Gold nanoparticles (AuNPs) have been reported to be making headway in biological platforms, but they may also have the capacity to stimulate protein oligomerization. Our goal herein was to investigate the neurotoxicity and oligomerization of amyloid-β-1-42 (Aβ1-42) in the presence of AuNPs. The precipitation approach was used to create AuNPs, which were then analyzed using transmission electron microscopy (TEM), ThT, Congo red, and CD spectroscopy. The results demonstrated that the 50-nm-sized fabricated AuNPs guided acceleration in Aβ1-42. In addition, cytotoxicity studies on PC 12 cells showed that Aβ1-42 with AuNPs were less toxic than untreated oligomers Aβ1-42 in terms of inducing cell death, oxidative apoptosis, stress, and membrane leakage. In conclusion, our investigation sheds light on how AuNPs stimulate the development of cytotoxic oligomers by binding to proteins in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Vaz M, Silvestre S (2020) Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol 887:173554

    Article  CAS  Google Scholar 

  2. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, Green G, Dionne D, Nguyen L, Marshall JL (2020) Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci 23:701–706

    Article  CAS  Google Scholar 

  3. Schneider L (2020) A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol 19:111–112

    Article  Google Scholar 

  4. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570:332–337

    Article  CAS  Google Scholar 

  5. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, Shcherbinin S, Sparks J, Sims JR, Brys M (2021) Donanemab in early Alzheimer’s disease. N Engl J Med 384:1691–1704

    Article  CAS  Google Scholar 

  6. Yang G, Zhang Y, Zhao J, He Y, Yuan R, Chen S (2022) Dual-emitting Iridium nanorods combining dual-regulating coreaction accelerator Ag nanoparticles for electrochemiluminescence ratio determination of amyloid-β oligomers. Biosens Bioelectron 216:114629

    Article  CAS  Google Scholar 

  7. Fang W-K, Liu L, Zhang L, Liu D, Liu Y, Tang H-W (2021) Detection of amyloid β oligomers by a fluorescence ratio strategy based on optically trapped highly doped upconversion nanoparticles-SiO2@ metal–organic framework microspheres. Anal Chem 93:12447–12455

    Article  CAS  Google Scholar 

  8. Tapia-Arellano A, Gallardo-Toledo E, Celis F, Rivera R, Moglia I, Campos M, Carulla N, Baez M, Kogan MJ (2021) The curvature of gold nanoparticles influences the exposure of amyloid-β and modulates its aggregation process. Mater Sci Eng C 128:112269

    Article  CAS  Google Scholar 

  9. Liu Y, Xu Q, Zhang Y, Ren B, Huang L, Cai H, Xu T, Liu Q, Zhang X (2021) An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-β oligomers. Talanta 231:122360

    Article  CAS  Google Scholar 

  10. Sanati M, Khodagholi F, Aminyavari S, Ghasemi F, Gholami M, Kebriaeezadeh A, Sabzevari O, Hajipour MJ, Imani M, Mahmoudi M (2019) Impact of gold nanoparticles on amyloid β-induced Alzheimer’s disease in a rat animal model: involvement of STIM proteins. ACS Chem Neurosci 10:2299–2309

    Article  CAS  Google Scholar 

  11. Geng H, Pan Y, Zhang R, Gao D, Wang Z, Li B, Li N, Guo D, Xing C (2021) Binding to amyloid-β protein by photothermal blood-brain barrier-penetrating nanoparticles for inhibition and disaggregation of fibrillation. Adv Funct Mater 31:2102953

    Article  CAS  Google Scholar 

  12. Zhao J, Xu N, Yang X, Ling G, Zhang P (2022) The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer’s disease. Colloids Interface Sci Commun 46:100579

    Article  CAS  Google Scholar 

  13. Hayne DJ, Lim S, Donnelly PS (2014) Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem Soc Rev 43:6701–6715

    Article  CAS  Google Scholar 

  14. Qiao J, Zhang Z, Zhao J, Xia Z (2019) Tuning of the compositions and multiple activator sites toward single-phased white emission in (Ca9–x Sr x) MgK (PO4) 7: Eu2+ phosphors for solid-state lighting. Inorg Chem 58:5006–5012

    Article  CAS  Google Scholar 

  15. Gomes LMF, Bataglioli JC, Storr T (2020) Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 412:213255

    Article  CAS  Google Scholar 

  16. Shukla R, Singh A, Handa M, Flora SJS, Kesharwani P (2021) Nanotechnological approaches for targeting amyloid-β aggregation with potential for neurodegenerative disease therapy and diagnosis. Drug Discov Today 26:1972–1979

    Article  CAS  Google Scholar 

  17. Mashal Y, Abdelhady H, Iyer AK (2022) Comparison of tau and amyloid-β targeted immunotherapy nanoparticles for Alzheimer’s disease. Biomolecules 12:1001

    Article  CAS  Google Scholar 

  18. Kim D, Kwon HJ, Hyeon T (2019) Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid-β in Alzheimer’s disease. Adv Mater 31:1807965

    Article  Google Scholar 

  19. Yang L, Wang W, Chen J, Wang N, Zheng G (2018) A comparative study of resveratrol and resveratrol-functional selenium nanoparticles: inhibiting amyloid β aggregation and reactive oxygen species formation properties. J Biomed Mater Res A 106:3034–3041

    Article  CAS  Google Scholar 

  20. Song M, Sun Y, Luo Y, Zhu Y, Liu Y, Li H (2018) Exploring the mechanism of inhibition of Au nanoparticles on the aggregation of amyloid-β (16-22) peptides at the atom level by all-atom molecular dynamics. Int J Mol Sci 19:1815

    Article  Google Scholar 

  21. Yoo YK, Kim G, Park D, Kim J, Kim Y, Kim HY, Yang SH, Lee JH, Hwang KS (2020) Gold nanoparticles assisted sensitivity improvement of interdigitated microelectrodes biosensor for amyloid-β detection in plasma sample. Sens Actuators B Chem 308:127710

    Article  CAS  Google Scholar 

  22. Qi Y, Yi P, He T, Song X, Liu Y, Li Q, Zheng J, Song R, Liu C, Zhang Z (2020) Quercetin-loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids Surf A: Physicochem Eng Asp 602:125058

    Article  CAS  Google Scholar 

  23. Tavanti F, Pedone A, Menziani MC, Alexander-Katz A (2020) Computational insights into the binding of monolayer-capped gold nanoparticles onto amyloid-β fibrils. ACS Chem Neurosci 11:3153–3160

    Article  CAS  Google Scholar 

  24. Lai Y, Zhu Y, Xu Z, Hu X, Saeed M, Yu H, Chen X, Liu J, Zhang W (2020) Engineering versatile nanoparticles for near-infrared light-tunable drug release and photothermal degradation of amyloid β. Adv Funct Mater 30:1908473

    Article  CAS  Google Scholar 

  25. Wang J, Fan Y, Tan Y, Zhao X, Zhang Y, Cheng C, Yang M (2018) Porphyrinic metal–organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-β peptide. ACS Appl Mater Interfaces 10:36615–36621

    Article  CAS  Google Scholar 

  26. Riley RS, Day ES (2017) Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIREs Nanomed Nanobiotechnol 9:e1449. https://doi.org/10.1002/wnan.1449

    Article  CAS  Google Scholar 

  27. Li T, Yan G, Bai Y, Wu M, Fang G, Zhang M, Xie Y, Borjigidai A, Fu B (2020) Papain bioinspired gold nanoparticles augmented the anticancer potency of 5-FU against lung cancer. J Exp Nanosci 15:109–128. https://doi.org/10.1080/17458080.2020.1746767

    Article  CAS  Google Scholar 

  28. An J, Zou F, Zhang J, Tang B, Wang J (2022) Enhanced properties of silk fabric through immobilization of gold and titanium dioxide nanoparticles. Colloids Surf A: Physicochem Eng Asp 634:128018. https://doi.org/10.1016/j.colsurfa.2021.128018

    Article  CAS  Google Scholar 

  29. Zhen Y, Chen L, Ma X, Ding G, Zhang D, Chen Q (2021) β-amyloid peptide 1–42-conjugated magnetic nanoparticles for the isolation and purification of glycoproteins in egg white. ACS Appl Mater Interfaces 13:14028–14036

    Article  CAS  Google Scholar 

  30. Abbas M, Adil M, Ehtisham-ul-Haque S, Munir B, Yameen M, Ghaffar A, Shar GA, Tahir MA, Iqbal M (2018) Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review. Sci Total Environ 626:1295–1309

    Article  CAS  Google Scholar 

  31. Masroor A, Chandel TI, Malik S, Mateen QN, Uversky VN, Khan RH (2021) Evaluation of ThT augmentation and RLS inner filter effect caused by highly fluorescent coumarin derivative and establishing it as true inhibitor of amyloid fibrillation. Arch Biochem Biophys 709:108981

    Article  CAS  Google Scholar 

  32. Ma Y, Geng F, Wang Y, Xu M, Shao C, Qu P, Zhang Y, Ye B (2019) Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition. Biosens Bioelectron 134:36–41

    Article  CAS  Google Scholar 

  33. Abdul Manap AS, Wei Tan AC, Leong WH, Yin Chia AY, Vijayabalan S, Arya A, Wong EH, Rizwan F, Bindal U, Koshy S (2019) Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay, Frontiers in Aging. Neuroscience 11:206

    CAS  Google Scholar 

  34. Swaminathan S, Haribabu J, Mohamed Subarkhan MK, Manonmani G, Senthilkumar K, Balakrishnan N, Bhuvanesh N, Echeverria C, Karvembu R (2022) Coordination behavior of acylthiourea ligands in their Ru(II)–benzene complexes─structures and anticancer activity. Organometallics 41:1621–1630. https://doi.org/10.1021/acs.organomet.2c00127

    Article  CAS  Google Scholar 

  35. Sonamuthu J, Cai Y, Liu H, Kasim MSM, Vasanthakumar VR, Pandi B, Wang H, Yao J (2020) MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. Int J Biol Macromol 153:1058–1069. https://doi.org/10.1016/j.ijbiomac.2019.10.236

    Article  CAS  Google Scholar 

  36. Kalaiarasi G, Mohamed Subarkhan M, Fathima Safwana CK, Sruthi S, Sathiya Kamatchi T, Keerthana B, Ashok Kumar SL (2022) New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorganica ChimActa 535:120863. https://doi.org/10.1016/j.ica.2022.120863

    Article  CAS  Google Scholar 

  37. Swaminathan S, Haribabu J, Mohamed Subarkhan MK, Gayathri D, Balakrishnan N, Bhuvanesh N, Echeverria C, Karvembu R (2021) Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans 50:16311–16325. https://doi.org/10.1039/D1DT02611A

    Article  CAS  Google Scholar 

  38. Giriraj K, Mohamed Kasim MS, Balasubramaniam K, Thangavel SK, Venkatesan J, Suresh S, Shanmugam P, Karri C (2022) Various coordination modes of new coumarin Schiff bases toward cobalt (III) ion: synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organomet Chem 36:e6536. https://doi.org/10.1002/aoc.6536

    Article  CAS  Google Scholar 

  39. Mohan N, Mohamed Subarkhan MK, Ramesh R (2018) Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J Organomet Chem 859:124–131. https://doi.org/10.1016/j.jorganchem.2018.01.022

    Article  CAS  Google Scholar 

  40. Kamiloglu S, Sari G, Ozdal T, Capanoglu E (2020) Guidelines for cell viability assays, Food. Frontiers 1:332–349

    Google Scholar 

  41. Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc 6:465–468. https://doi.org/10.1101/pdb.prot095497

  42. Ibarguen CA, Mosquera A, Parra R, Castro MS, Rodríguez-Páez JE (2007) Synthesis of SnO2 nanoparticles through the controlled precipitation route. Mater Chem Phys 101:433–440. https://doi.org/10.1016/j.matchemphys.2006.08.003

    Article  CAS  Google Scholar 

  43. Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A (2018) Synthesis, photoluminescence and magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Physica E Low Dimens Syst Nanostruct 101:212–219. https://doi.org/10.1016/j.physe.2018.04.009

    Article  CAS  Google Scholar 

  44. Araya-Castro K, Chao T-C, Durán-Vinet B, Cisternas C, Ciudad G, Rubilar O (2020) Green synthesis of copper oxide nanoparticles using protein fractions from an aqueous extract of brown algae Macrocystis pyrifera. Processes 9:78

    Article  Google Scholar 

  45. Javed I, Peng G, Xing Y, Yu T, Zhao M, Kakinen A, Lin S (2019) Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 10(1):1–14

    Article  CAS  Google Scholar 

  46. Huo X, Zhang Y, Jin X, Li Y, Zhang L (2019) A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B, Biol 190:98–102. https://doi.org/10.1016/j.jphotobiol.2018.11.008

    Article  CAS  Google Scholar 

  47. Sonawane SK, Ahmad A, Chinnathambi S (2019) Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega 4:12833–12840. https://doi.org/10.1021/acsomega.9b01411

    Article  CAS  Google Scholar 

  48. Brancolini G, Maschio MC, Cantarutti C, Corazza A, Fogolari F, Bellotti V, Corni S, Esposito G (2018) Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and ΔN6 β2-microglobulin variants. Nanoscale 10:4793–4806

    Article  CAS  Google Scholar 

  49. Xu Y, Sun H, Wang Z, Wang Y (2019) Plasma levels of pro-inflammatory molecules and their expressions are associated with severity of heart failure: an investigation in Chinese cohort. Eur J Inflamm 17:2058739219836577

    Article  CAS  Google Scholar 

Download references

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Shao.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: figure 6 was not correct

Supplementary information

ESM 1

(DOCX 1123 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Q., Jin, X., Zhou, C. et al. Gold nanoparticles with amyloid-β reduce neurocell cytotoxicity for the treatment and care of Alzheimer’s disease therapy. Gold Bull 56, 135–144 (2023). https://doi.org/10.1007/s13404-023-00327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-023-00327-1

Keywords

Navigation