Skip to main content

Advertisement

Log in

Launching low-energy surface plasmons in purple gold (AuAl2)

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

We confirm that the unusual purple color of the intermetallic compound AuAl2 is of a plasmonic origin by launching surface plasmons (SPs) in thin AuAl2 films. We measure the SP dispersion relation and also use the films to measure the index of refraction of sucrose solutions using standard SP resonance sensing. We find that the SP energy in planar AuAl2 is approximately 2.1 eV, about 0.4 eV lower than in gold, and the material is highly resistant to oxidation. This is close to what is expected from previously reported measurements of the dielectric function of AuAl2. On this basis, we predict that AuAl2 nanoparticles will a have very strong, spectrally nearly uniform light absorbance about an order of magnitude greater than standard carbon black. Such particles may therefore find applications as obscurants or as an alternative to more complex light-absorbing gold structures in areas such as photothermal therapy or solar steam generation, or in plasmonic catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harman G (2010) Gold-aluminum intermetallic compounds and other metallic Interface reactions in wire bonding. In: Wire bonding in microelectronics. 3rd edn. McGraw Hill, pp 131–182

  2. Roberts-Austen WC (1891) On the melting points of the gold-aluminium series of alloys. Proc R Soc Lond 50:367–368. https://doi.org/10.1098/rspl.1891.0047

    Article  Google Scholar 

  3. Cretu C, van der Lingen E (1999) Coloured gold alloys. Gold Bull 32(4):115–126. https://doi.org/10.1007/bf03214796

    Article  CAS  Google Scholar 

  4. Cahn RW (1998) Materials science: a precious stone that isn’t. Nature 396(6711):523–524. https://doi.org/10.1038/25010

    Article  CAS  Google Scholar 

  5. Klotz U (2010) Metallurgy and processing of coloured gold intermetallics — part I: properties and surface processing. Gold Bull 43(1):4–10. https://doi.org/10.1007/bf03214961

    Article  CAS  Google Scholar 

  6. Philofsky E (1970) Intermetallic formation in gold-aluminum systems. Solid State Electron 13(10):1391–1394. https://doi.org/10.1016/0038-1101(70)90172-3

    Article  CAS  Google Scholar 

  7. Majni G, Nobili C, Ottaviani G, Costato M, Galli E (1981) Gold-aluminum thin-film interactions and compound formation. J Appl Phys 52(6):4047–4054. https://doi.org/10.1063/1.329214

    Article  CAS  Google Scholar 

  8. Xu C, Sritharan T, Mhaisalkar SG (2007) Interface transformations in thin film aluminum–gold diffusion couples. Thin Solid Films 515(13):5454–5461. https://doi.org/10.1016/j.tsf.2007.01.017

    Article  CAS  Google Scholar 

  9. Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z, Sivakumar M, Acoff VL (2010) A micromechanism study of thermosonic gold wire bonding on aluminum pad. J Appl Phys 108(11):113517. https://doi.org/10.1063/1.3514005

    Article  CAS  Google Scholar 

  10. Noolu N, Murdeshwar N, Ely K, Lippold J, Baeslack W (2004) Phase transformations in thermally exposed Au-Al ball bonds. J Electron Mater 33(4):340–352. https://doi.org/10.1007/s11664-004-0141-7

    Article  CAS  Google Scholar 

  11. Hüfner S, Wernick JH, West KW (1972) The density of states of AuAl2, AuIn2 and AuGa2. Solid State Commun 10(11):1013–1016. https://doi.org/10.1016/0038-1098(72)90885-X

    Article  Google Scholar 

  12. Wernick JH, Menth A, Geballe TH, Hull G, Maita JP (1969) Superconducting, thermal and magnetic susceptibility behavior of some intermetallic compounds with the fluorite structure. J Phys Chem Solids 30(8):1949–1956. https://doi.org/10.1016/0022-3697(69)90171-1

    Article  CAS  Google Scholar 

  13. Switendick AC, Narath A (1969) Band structure and 197Au nuclear-magnetic resonance studies in AuAl2, AuGa2, and AuIn2. Phys Rev Lett 22(26):1423–1426. https://doi.org/10.1103/PhysRevLett.22.1423

    Article  CAS  Google Scholar 

  14. Perez I, Qi B, Liang G, Lu F, Croft M, Wieliczka D (1988) Spectroscopic results on the above and below E F electronic structure of TAl2, T=Au and Pt. Phys Rev B 38(17):12233–12237. https://doi.org/10.1103/PhysRevB.38.12233

    Article  CAS  Google Scholar 

  15. Hsu L-S, Guo GY, Denlinger JD, Allen JW (2001) Experimental and theoretical study of the electronic structure of AuAl2. J Phys Chem Solids 62(6):1047–1054. https://doi.org/10.1016/S0022-3697(00)00275-4

    Article  CAS  Google Scholar 

  16. Keast VJ, Birt K, Koch CT, Supansomboon S, Cortie MB (2011) The role of plasmons and interband transitions in the color of AuAl2, AuIn2, and AuGa2. Appl Phys Lett 99(11):111908. https://doi.org/10.1063/1.3638061

    Article  CAS  Google Scholar 

  17. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  18. Supansomboon S, Maaroof A, Cortie MB (2008) “Purple glory”: the optical properties and technology of AuAl2 coatings. Gold Bull 41(4):296–304. https://doi.org/10.1007/bf03214887

    Article  CAS  Google Scholar 

  19. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin. https://doi.org/10.1007/0-387-37825-1

    Book  Google Scholar 

  20. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193. https://doi.org/10.1126/science.1114849

    Article  CAS  Google Scholar 

  21. Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2(3):136–159. https://doi.org/10.1002/lpor.200810003

    Article  CAS  Google Scholar 

  22. Brolo AG (2012) Plasmonics for future biosensors. Nat Photon 6(11):709–713. https://doi.org/10.1038/nphoton.2012.266

    Article  CAS  Google Scholar 

  23. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294. https://doi.org/10.1002/adma.201205076

    Article  CAS  Google Scholar 

  24. Keast VJ, Zwan B, Supansomboon S, Cortie MB, Persson POÅ (2013) AuAl2 and PtAl2 as potential plasmonic materials. J Alloy Compd 577(0):581–586. https://doi.org/10.1016/j.jallcom.2013.06.161

    Article  CAS  Google Scholar 

  25. Supansomboon S, Dowd A, Gentle A, van der Lingen E, Cortie MB (2015) Thin films of PtAl2 and AuAl2 by solid-state reactive synthesis. Thin Solid Films 589:805–812. https://doi.org/10.1016/j.tsf.2015.07.019

    Article  CAS  Google Scholar 

  26. Moser M, Mayrhofer PH, Ross IM, Rainforth WM (2007) Thermal stability of sputtered intermetallic Al–Au coatings. J Vac Sci Technol A 25(5):1402–1406. https://doi.org/10.1116/1.2757181

    Article  CAS  Google Scholar 

  27. Debu DT, Ghosh PK, French D, Herzog JB (2017) Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks. Opt Mater Express 7(1):73–84. https://doi.org/10.1364/OME.7.000073

    Article  CAS  Google Scholar 

  28. Habteyes TG, Dhuey S, Wood E, Gargas D, Cabrini S, Schuck PJ, Alivisatos AP, Leone SR (2012) Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 6(6):5702–5709. https://doi.org/10.1021/nn301885u

    Article  CAS  Google Scholar 

  29. ASTM (2017) Standard practice for computing the colors of objects by using the CIE system. E308-17

  30. Kretschmann E, Raether H (1968) Radiative decay of nonradiative surface plasmons excited by light. Z Naturforch A 23:2135–2136. https://doi.org/10.1515/zna-1968-1247

    Article  CAS  Google Scholar 

  31. Kabashin AV, Kochergin VE, Beloglazov AA, Nikitin PI (1998) Phase-polarisation contrast for surface plasmon resonance biosensors. Biosens Bioelectron 13(12):1263–1269. https://doi.org/10.1016/S0956-5663(98)00088-8

    Article  CAS  Google Scholar 

  32. Rhodes C, Franzen S, Maria JP, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100(5):054905. https://doi.org/10.1063/1.2222070

    Article  CAS  Google Scholar 

  33. Homola J (ed) (2006) Surface plasmon resonance based sensors, Springer Series on Chemical Sensors and Biosensors, vol 4. Springer, Berlin

    Google Scholar 

  34. Latimer GW Jr (ed) (2012) Official methods of analysis of AOAC international, Vol. II, vol II, 19th edn. AOAC international, Rockville

    Google Scholar 

  35. Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40(1):27–67. https://doi.org/10.1080/02786820500421521

    Article  CAS  Google Scholar 

  36. Streit JK, Bachilo SM, Ghosh S, Lin C-W, Weisman RB (2014) Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. Nano Lett 14(3):1530–1536. https://doi.org/10.1021/nl404791y

    Article  CAS  Google Scholar 

  37. Paul GA (2007) Modelled infrared extinction and attenuation performance of atmospherically disseminated high aspect ratio metal nanoparticles. J Opt A 9(3):278–300. https://doi.org/10.1088/1464-4258/9/3/012

    Article  Google Scholar 

  38. Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2013) Solar vapor generation enabled by nanoparticles. ACS Nano 7(1):42–49. https://doi.org/10.1021/nn304948h

    Article  CAS  Google Scholar 

  39. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120. https://doi.org/10.1021/Ja057254a

    Article  CAS  Google Scholar 

  40. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934. https://doi.org/10.1021/nl070610y

    Article  CAS  Google Scholar 

  41. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183. https://doi.org/10.1002/smll.201000134

    Article  CAS  Google Scholar 

  42. Lissett B, Jiantang S, Kun F, Nastassja L, Vengadesan N, Joseph C, Rebekah D (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnol 19(31):315102. https://doi.org/10.1088/0957-4484/19/31/315102

    Article  CAS  Google Scholar 

  43. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317. https://doi.org/10.1038/86684

    Article  CAS  Google Scholar 

  44. Aslam U, Chavez S, Linic S (2017) Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat Nanotech 12:1000–1005. https://doi.org/10.1038/nnano.2017.131

    Article  CAS  Google Scholar 

  45. Zhang X, Li X, Reish ME, Zhang D, Su NQ, Gutiérrez Y, Moreno F, Yang W, Everitt HO, Liu J (2018) Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett 18(3):1714–1723. https://doi.org/10.1021/acs.nanolett.7b04776

    Article  CAS  Google Scholar 

  46. Ren X, Cao E, Lin W, Song Y, Liang W, Wang J (2017) Recent advances in surface plasmon-driven catalytic reactions. RSC Adv 7(50):31189–31203. https://doi.org/10.1039/C7RA05346K

    Article  CAS  Google Scholar 

  47. Zhang XM, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401. https://doi.org/10.1088/0034-4885/76/4/046401

    Article  CAS  Google Scholar 

  48. Christopher P, Xin H, Marimuthu A, Linic S (2012) Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater 11:1044–1050. https://doi.org/10.1038/nmat3454

    Article  CAS  Google Scholar 

  49. Chen H, Liu C, Wang M, Zhang C, Luo N, Wang Y, Abroshan H, Li G, Wang F (2017) Visible light gold nanocluster photocatalyst: selective aerobic oxidation of amines to imines. ACS Catal 7(5):3632–3638. https://doi.org/10.1021/acscatal.6b03509

    Article  CAS  Google Scholar 

  50. Huang L, Rudolph M, Rominger F, Hashmi ASK (2016) Photosensitizer-free visible-light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angew Chem Int Ed 55(15):4808–4813. https://doi.org/10.1002/anie.201511487

    Article  CAS  Google Scholar 

  51. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95(25):257403. https://doi.org/10.1103/PhysRevLett.95.257403

    Article  CAS  Google Scholar 

  52. Furrer A, Seita M, Spolenak R (2013) The effects of defects in purple AuAl2 thin films. Acta Mater 61(8):2874–2883. https://doi.org/10.1016/j.actamat.2013.01.029

    Article  CAS  Google Scholar 

  53. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129. https://doi.org/10.1023/A:1016875709579

    Article  Google Scholar 

  54. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501. https://doi.org/10.1021/nl062901x

    Article  CAS  Google Scholar 

  55. Geddes CD (ed) (2010) Metal-enhanced fluorescence. John Wiley & sons, Hoboken

    Google Scholar 

  56. Deng W, Xie F, Baltar HTMCM, Goldys EM (2013) Metal-enhanced fluorescence in the life sciences: here, now and beyond. Phys Chem Chem Phys 15(38):15695–15708. https://doi.org/10.1039/c3cp50206f

    Article  CAS  Google Scholar 

  57. Racknor C, Singh MR, Zhang Y, Birch DJS, Chen Y (2014) Energy transfer between a biological labelling dye and gold nanorods. Methods Appl Fluoresc 2(1):015002. https://doi.org/10.1088/2050-6120/2/1/015002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans D. Robinson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaimongkol, P., Robinson, H.D. Launching low-energy surface plasmons in purple gold (AuAl2). Gold Bull 52, 27–33 (2019). https://doi.org/10.1007/s13404-018-0250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-018-0250-3

Keywords

Navigation