Skip to main content

Advertisement

Log in

Effect of Au content on the enhanced photocatalytic efficiency of mesoporous Au/TiO2 nanocomposites in UV and sunlight

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Detoxification of harmful dyes through nonconventional catalytic processes is getting thrust in light of environmental remediation. Current work reveals synthesis of gold–titania (Au/TiO2) mesoporous nanostructure and its enhanced photocatalytic performance for degradation of alizarin dye. Optically, Au/TiO2 shows a characteristic surface plasmonic absorption band at 520 nm, whereas X-ray diffraction (XRD) pattern reveals the anatase phase of TiO2 with fcc unit cell structure and tetragonal geometry. X-ray photon spectroscopy depicts (Au 4f 7/2 at 84.0 and Au 4f 5/2 at 87.7 eV) the elemental state of gold (Au0). Specific surface area was witnessed to decrease with increase of Au content (169, 141, 130, and 119 m2/g for 1, 2, 3, and 4 wt%, respectively). The mesoporous Au/TiO2 nanocomposite showed higher catalytic performance in comparison to commercial nano-TiO2 (P25), which is credited to better charge delocalization at metal semiconductor interface. The reusability studies of the photocatalyst exhibited more than 98% degradation of the dye even after 10 consecutive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu J, Qi L, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125

    Article  Google Scholar 

  2. Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Lu Y (2007) Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  Google Scholar 

  3. Xiaobo C (2009) Titanium dioxide nanomaterials and their energy applications. Chinese J Catal 30:839–851

    Article  Google Scholar 

  4. Wang X, Blackford M, Prince K, Caruso RA (2012) Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl Mater Inter 4:476–482

    Article  Google Scholar 

  5. Hamal DB, Klabunde KJ (2007) Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J Colliod Inter Sci 311:514–522

    Article  Google Scholar 

  6. Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  Google Scholar 

  7. Wang X, Caruso RA (2011) Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. J Mater Chem 21:20–28

    Article  Google Scholar 

  8. Tada H, Kiyonaga T, Naya SI (2009) Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem Soc Rev 38:1849–1858

    Article  Google Scholar 

  9. Gomes Silva C, Juárez R, Marino T, Molinari R, García H (2010) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133:595–602

    Article  Google Scholar 

  10. Kimura K, Naya SI, Jin-nouchi Y, Tada H (2012) TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst’s activity. J Phys Chem C 116:7111–7117

    Article  Google Scholar 

  11. Nishijima Y, Ueno K, Kotake Y, Murakoshi K, Inoue H, Misawa H (2012) Near infrared plasmon-assisted water oxidation. J Phys Chem Lett 3:1248–1252

    Article  Google Scholar 

  12. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315

    Article  Google Scholar 

  13. Wang H, You T, Shi W, Li J, Guo L (2012) Au/TiO2/au as a plasmonic coupling photocatalyst. J Phys Chem C 116:6490–6494

    Article  Google Scholar 

  14. Revol G, McCallum T, Morin M, Gagosz F, Barriault L (2013) Photoredox transformations with dimeric gold complexes. Angew Chem Int Ed 52:13342–13345

    Article  Google Scholar 

  15. Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi ASK (2015) A highly efficient gold-catalyzed photoredox α-C (sp3) H alkynylation of tertiary aliphatic amines with sunlight. Angew Chem Int Ed 54:6046–6050

    Article  Google Scholar 

  16. Lu Y, Yu H, Chen S, Quan X, Zhao H (2012) Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ Sci Technol 46:1724–1730

    Article  Google Scholar 

  17. Seh ZW, Liu S, Low M, Zhang SY, Liu Z, Mlayah A, Han MY (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24:2310–2314

    Article  Google Scholar 

  18. Li J, Zeng HC (2006) Preparation of monodisperse Au/TiO2 nanocatalysts via self-assembly. Chem Mater 18:4270–4277

    Article  Google Scholar 

  19. Yogi C, Kojima K, Takai T, Wada N (2009) Photocatalytic degradation of methylene blue by Au-deposited TiO2 film under UV irradiation. J Mater Sci 44:821–827

    Article  Google Scholar 

  20. Li WC, Comotti M, Schüth F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation. J Catal 237:190–196

    Article  Google Scholar 

  21. Hidalgo MC, Maicu M, Navío JA, Colón G (2009) Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications. J Phys Chem C 113:12840–12847

    Article  Google Scholar 

  22. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637

    Article  Google Scholar 

  23. Iliev V, Tomova D, Bilyarska L, Tyuliev G (2007) Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J Mol Catal A Chem 263:32–38

    Article  Google Scholar 

  24. Chen D, Huang F, Cheng YB, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21:2206–2210

    Article  Google Scholar 

  25. Tran ND, Besson M, Descorme C (2011) TiO2-supported gold catalysts in the catalytic wet air oxidation of succinic acid: influence of the preparation, the storage and the pre-treatment conditions. New J Chem 35:2095–2104

    Article  Google Scholar 

  26. Addamo M, Augugliaro V, Di Paola A, García-López E, Loddo V, Marcì G, Schiavello M (2004) Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO2 catalysts. J Phys Chem B 108:3303–3310

    Article  Google Scholar 

  27. Cui F, Hua Z, Wei C, Li J, Gao Z, Shi J (2009) Highly dispersed Au nanoparticles incorporated mesoporous TiO2 thin films with ultrahigh Au content. J Mater Chem 19:7632–7637

    Article  Google Scholar 

  28. Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley A, Prati L, Hutchings GJ (2007) Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catal Today 122:317–324

    Article  Google Scholar 

  29. Pizzio LR (2005) Mesoporous titania: effect of thermal treatment on the texture and acidic properties. Mater Lett 59:994–997

    Article  Google Scholar 

  30. Chen Y, Wang H, Liu CJ, Zeng Z, Zhang H, Zhou C, Yang Y (2012) Formation of monometallic Au and Pd and bimetallic Au–Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. J Catal 289:105–117

    Article  Google Scholar 

  31. Niwa M, Iwamoto M, Segawa KI (1986) Temperature-programmed desorption of ammonia on zeolites. Influence of the experimental conditions on the acidity measurement. Bull Chem Soc Jpn 59:3735–3739

    Article  Google Scholar 

  32. Yang H, Tang D, Lu X, Yuan Y (2009) Superior performance of gold supported on titanium-containing hexagonal mesoporous molecular sieves for gas-phase epoxidation of propylene with use of H2 and O2. J Phys Chem C 113:8186–8193

    Article  Google Scholar 

  33. Yu JG, Su YR, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990

    Article  Google Scholar 

  34. Flego C, Carluccio L, Rizzo C, Perego C (2001) Synthesis of mesoporous SiO2–ZrO2 mixed oxides by sol–gel method. Catal Commun 2:43–48

    Article  Google Scholar 

  35. Du M, Zhan G, Yang X, Wang H, Lin W, Zhou Y, Jia L (2011) Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation. J Catal 283:192–201

    Article  Google Scholar 

  36. Basu S, Pande S, Jana S, Bolisetty S, Pal T (2008) Controlled interparticle spacing for surface-modified gold nanoparticle aggregates. Langmuir 24:5562–5568

    Article  Google Scholar 

  37. Yu J, Yue L, Liu S, Huang B, Zhang X (2009) Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres. J Colloid Interf Sci 334:58–64

    Article  Google Scholar 

  38. Zhong X, Feng Y, Lieberwirth I, Knoll W (2006) Facile synthesis of morphology controlled platinum nanocrystals. Chem Mater 18:2468–2471

    Article  Google Scholar 

  39. Zwijnenburg A, Goossens A, Sloof WG, Crajé MW, van der Kraan AM, Jos de Jongh L, Moulijn JA (2002) XPS and Mössbauer characterization of Au/TiO2 propene epoxidation catalysts. J Phys Chem B 106:9853–9862

    Article  Google Scholar 

  40. Boudart M, Djéga-Mariadassou G (1984) In kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton N. J, p. 26

    Book  Google Scholar 

  41. Kumar A, Kumar VP, Kumar BP, Vishwanathan V, Chary KV (2014) Vapor phase oxidation of benzyl alcohol over gold nanoparticles supported on mesoporous TiO2. Catal Lett 144:1450–1459

    Article  Google Scholar 

  42. Kumar A, Kumar VP, Vishwanathan V, Chary KV (2015) Synthesis, characterization, and reactivity of Au/MCM-41 catalysts prepared by homogeneous deposition precipitation (HDP) method for vapor phase oxidation of benzyl alcohol. Mater Res Bull 61:105–112

    Article  Google Scholar 

  43. Xiang Q, Yu J, Cheng B, Ong HC (2010) Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. Chem 5:1466–1474

    Google Scholar 

  44. Sharma M, Das D, Baruah A, Jain A, Ganguli AK (2014) Design of porous silica supported tantalum oxide hollow spheres showing enhanced photocatalytic activity. Langmuir 30:3199–3208

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to DST (Grant No. SB/FT/CS-178/2013), New Delhi, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish Kumar or Soumen Basu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A., Sharma, M., Kumar, A. et al. Effect of Au content on the enhanced photocatalytic efficiency of mesoporous Au/TiO2 nanocomposites in UV and sunlight. Gold Bull 50, 33–41 (2017). https://doi.org/10.1007/s13404-016-0191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-016-0191-7

Keywords

Navigation