Skip to main content
Log in

Amberlite XAD-1180 impregnation with Cyphos IL101 for the selective recovery of precious metals from HCl solutions

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The impregnation of Amberlite XAD-1180 with Cyphos IL101 (trihexyl(tetradecyl)phosphonium chloride ionic liquid, IL) confers to the resin highly efficient extraction properties for Au(III), Pd(II), and Pt(IV) in highly concentrated HCl solutions. Extraction isotherms (fitted by the Langmuir equation) show maximum extraction capacities proportional to IL loading. Increasing the IL loading has a limiting effect for extraction kinetics, which are controlled by the resistance to intraparticle diffusion: the complete filling of the porous volume of the extractant-impregnated resin (EIR) with the IL considerably hinders mass transfer of target metal ions. The EIRs are selective for precious metals (PGMs) over base metals (BMs), and the selection of appropriate eluents (HCl, HNO3, acidic thiourea) allows recovering almost selectively the three metals in pure or highly enriched proportions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bigum M, Brogaard L, Christensen TH (2012) Metal recovery from high-grade WEEE: a life cycle assessment. J Hazard Mater 207–208:8–14. doi:10.1016/j.jhazmat.2011.10.001

    Article  Google Scholar 

  2. Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25(1):28–37. doi:10.1016/j.mineng.2011.09.019

    Article  Google Scholar 

  3. Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Procedia Environ Sci 16:560–568. doi:10.1016/j.proenv.2012.10.077

    Article  Google Scholar 

  4. Syed S (2012) Recovery of gold from secondary sources—a review. Hydrometallurgy 115–116:30–51. doi:10.1016/j.hydromet.2011.12.012

    Article  Google Scholar 

  5. Sheng PP, Etsell TH (2007) Recovery of gold from computer circuit board scrap using aqua regia. Waste Manage Res 25(4):380–383. doi:10.1177/0734242x07076946

    Article  Google Scholar 

  6. Gupta B, Singh I (2013) Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their recovery from real samples. Hydrometallurgy 134:11–18. doi:10.1016/j.hydromet.2013.01.001

    Article  Google Scholar 

  7. Jha MK, Gupta D, Lee J-C, Kumar V, Jeong J (2014) Solvent extraction of platinum using amine based extractants in different solutions: a review. Hydrometallurgy 142:60–69. doi:10.1016/j.hydromet.2013.11.009

    Article  Google Scholar 

  8. Lee J-c, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag 32(1):3–18. doi:10.1016/j.wasman.2011.08.010

    Article  Google Scholar 

  9. Alguacil FJ, Alonso M (2005) Liquid-liquid extraction of Au(I) by amberlite LA2 and its application to a polymer-immobilized liquid membrane system. Gold Bull 38(2):68–72. doi:10.1007/BF03215235

    Article  Google Scholar 

  10. Kolekar SS, Anuse MA (2001) Rapid solvent extraction of gold(III) with high molecular weight amine from organic acid solution. Gold Bull 34(2):50–55. doi:10.1007/BF03214812

    Article  Google Scholar 

  11. Alexandratos SD (2009) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48(1):388–398. doi:10.1021/ie801242v

    Article  Google Scholar 

  12. Donia AM, Atia AA, Elwakeel KZ (2005) Gold(III) recovery using synthetic chelating resins with amine, thio and amine/mercaptan functionalities. Sep Purif Technol 42(2):111–116. doi:10.1016/j.seppur.2004.06.009

    Article  Google Scholar 

  13. Alguacil FJ, Adeva P, Alonso M (2005) Processing of residual gold (III) solutions via ion exchange. Gold Bull 38(1):9–13. doi:10.1007/BF03215222

    Article  Google Scholar 

  14. Parodi A, Vincent T, Pilsniak M, Trochimczuk AW, Guibal E (2008) Palladium and platinum binding on an imidazol containing resin. Hydrometallurgy 92(1–2):1–10. doi:10.1016/j.hydromet.2008.02.005

    Article  Google Scholar 

  15. Sun PP, Lee JY, Lee MS (2012) Separation of platinum(IV) and rhodium(III) from acidic chloride solution by ion exchange with anion resins. Hydrometallurgy 113–114:200–204. doi:10.1016/j.hydromet.2011.12.009

    Article  Google Scholar 

  16. Wołowicz A, Hubicki Z (2011) Investigation of macroporous weakly basic anion exchangers applicability in palladium(II) removal from acidic solutions—batch and column studies. Chem Eng J 174(2–3):510–521. doi:10.1016/j.cej.2011.08.075

    Article  Google Scholar 

  17. Marinho RS, da Silva CN, Afonso JC, da Cunha JWSD (2011) Recovery of platinum, tin and indium from spent catalysts in chloride medium using strong basic anion exchange resins. J Hazard Mater 192(3):1155–1160. doi:10.1016/j.jhazmat.2011.06.021

    Article  Google Scholar 

  18. Nguyen NV, Jeong J, Jha MK, Lee J-C, Osseo-Asare K (2010) Comparative studies on the adsorption of Au(III) from waste rinse water of semiconductor industry using various resins. Hydrometallurgy 105(1–2):161–167. doi:10.1016/j.hydromet.2010.09.003

    Article  Google Scholar 

  19. Hubicki Z, Wołowicz A, Leszczyńska M (2008) Studies of removal of palladium(II) ions from chloride solutions on weakly and strongly basic anion exchangers. J Hazard Mater 159(2–3):280–286. doi:10.1016/j.jhazmat.2008.02.017

    Article  Google Scholar 

  20. Pilśniak-Rabiega M, Trochimczuk AW (2014) Selective recovery of gold on functionalized resins. Hydrometallurgy 146:111–118. doi:10.1016/j.hydromet.2014.03.016

    Article  Google Scholar 

  21. Van Nguyen N, Lee J-C, Kim S-K, Jha MK, Chung K-S, Jeong J (2010) Adsorption of gold(III) from waste rinse water of semiconductor manufacturing industries using Amberlite XAD-7HP resin. Gold Bull 43(3):200–208. doi:10.1007/BF03214987

    Article  Google Scholar 

  22. Gurung M, Adhikari BB, Kawakita H, Ohto K, Inoue K, Alam S (2013) Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy 133:84–93. doi:10.1016/j.hydromet.2012.12.003

    Article  Google Scholar 

  23. Parajuli D, Kawakita H, Inoue K, Ohto K, Kajiyama K (2007) Persimmon peel gel for the selective recovery of gold. Hydrometallurgy 87(3–4):133–139. doi:10.1016/j.hydromet.2007.02.006

    Article  Google Scholar 

  24. Santos Sopena LA, Ruiz M, Pestov AV, Sastre AM, Yatluk Y, Guibal E (2011) N-(2-(2-Pyridyl)ethyl)chitosan (PEC) for Pd(II) and Pt(IV) sorption from HCl solutions. Cellulose 18(2):309–325. doi:10.1007/s10570-010-9469-8

    Article  Google Scholar 

  25. Kabay N, Cortina JL, Trochimczuk A, Streat M (2010) Solvent-impregnated resins (SIRs)—methods of preparation and their applications. React Funct Polym 70(8):484–496. doi:10.1016/j.reactfunctpolym.2010.01.005

    Article  Google Scholar 

  26. Kondo K, Sawada M, Matsumoto M (2014) Adsorption and separation of palladium and platinum with microcapsules containing tri-n-octylamine hydrochloride. J Water Process Eng 1:115–120. doi:10.1016/j.jwpe.2014.04.002

    Article  Google Scholar 

  27. Rovira M, Hurtado L, Cortina JL, Arnaldos J, Sastre AM (1998) Recovery of palladium(II) from hydrochloric acid solutions using impregnated resins containing Alamine 336. React Funct Polym 38(2–3):279–287. doi:10.1016/S1381-5148(98)00038-8

    Article  Google Scholar 

  28. Saitoh T, Nakane F, Hiraide M (2007) Preparation of trioctylamine-impregnated polystyrene-divinylbenzene porous resins for the collection of precious metals from water. React Funct Polym 67(3):247–252. doi:10.1016/j.reactfunctpolym.2006.12.001

    Article  Google Scholar 

  29. Saitoh T, Suzuki S, Hiraide M (2005) Solid phase extraction of some precious metals from hydrochloric acid to poly styrene-divinylbenzene porous resin impregnated with polyoxyethylene-type nonionic surfactant. J Chromatogr A 1097(1–2):179–182. doi:10.1016/j.chroma.2005.10.002

    Article  Google Scholar 

  30. Tong Y, Yang H, Li J, Yang Y (2013) Extraction of Au(III) by ionic liquid from hydrochloric acid medium. Sep Purif Technol 120:367–372. doi:10.1016/j.seppur.2013.10.028

    Article  Google Scholar 

  31. Lee J-M (2012) Extraction of noble metal ions from aqueous solution by ionic liquids. Fluid Phase Equilib 319:30–36. doi:10.1016/j.fluid.2012.01.033

    Article  Google Scholar 

  32. Whitehead JA, Lawrence GA, Owen MP, McCluskey A (2006) A new route to precious metal recovery and subsequent electrodeposition using ionic liquids. In: Proceedings - Electrochemical Society, p 901–910

  33. Cieszynska A, Wiśniewski M (2012) Extractive recovery of palladium(II) from hydrochloric acid solutions with Cyphos®IL 104. Hydrometallurgy 113-114:79–85. doi:10.1016/j.hydromet.2011.12.006

    Article  Google Scholar 

  34. Cieszynska A, Wisniewski M (2010) Extraction of palladium(II) from chloride solutions with Cyphos ®IL 101/toluene mixtures as novel extractant. Sep Purif Technol 73(2):202–207. doi:10.1016/j.seppur.2010.04.001

    Article  Google Scholar 

  35. Fischer L, Falta T, Koellensperger G, Stojanovic A, Kogelnig D, Galanski M, Krachler R, Keppler BK, Hann S (2011) Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Res 45(15):4601–4614. doi:10.1016/j.watres.2011.06.011

    Article  Google Scholar 

  36. Stojanovic A, Kogelnig D, Fischer L, Hann S, Galanski M, Groessl M, Krachler R, Keppler BK (2010) Phosphonium and ammonium ionic liquids with aromatic anions: synthesis, properties, and platinum extraction. Aust J Chem 63(3):511–524. doi:10.1071/CH09340

    Article  Google Scholar 

  37. Mokhodoeva O, Myasoedova G, Kubrakova I, Nikulin A, Artyushin O, Odinets I (2010) New solid extractants for preconcentrating noble metals. J Anal Chem 65(1):12–16. doi:10.1134/s106193481001003x

    Article  Google Scholar 

  38. Ciezynska A, Regel-Rosocka M, Wisniewski M (2007) Extraction of palladium(II) ions from chloride solutions with phosphonium ionic liquid Cyphos IL101. Pol J Chem Technol 9(2):99–101. doi:10.2478/v10026-007-0037-4

    Google Scholar 

  39. Regel-Rosocka M, Nowak L, Wisniewski M (2012) Removal of zinc(II) and iron ions from chloride solutions with phosphonium ionic liquids. Sep Purif Technol 97:158–163. doi:10.1016/j.seppur.2012.01.035

    Article  Google Scholar 

  40. Regel-Rosocka M, Wisniewski M, Borowiak-Resterna A, Cieszynska A, Sastre AM (2007) Selective extraction of palladium(II) from hydrochloric acid solutions with pyridinecarboxamides and ACORGA®CLX50. Sep Purif Technol 53(3):337–341. doi:10.1016/j.seppur.2006.08.005

    Article  Google Scholar 

  41. de los Rios AP, Hernandez-Fernandez FJ, Alguacil FJ, Lozano LJ, Ginesta A, Garcia-Diaz I, Sanchez-Segado S, Lopez FA, Godinez C (2012) On the use of imidazolium and ammonium-based ionic liquids as green solvents for the selective recovery of Zn(II), Cd(II), Cu(II) and Fe(III) from hydrochloride aqueous solutions. Sep Purif Technol 97:150–157. doi:10.1016/j.seppur.2012.02.040

    Article  Google Scholar 

  42. Cui L, Cheng F, Zhou J (2015) Behaviors and mechanism of iron extraction from chloride solutions using undiluted Cyphos IL 101. Ind Eng Chem Res 54(30):7534–7542. doi:10.1021/acs.iecr.5b01546

    Article  Google Scholar 

  43. Papaiconomou N, Svecova L, Bonnaud C, Cathelin L, Billard I, Chainet E (2015) Possibilities and limitations in separating Pt(IV) from Pd(II) combining imidazolium and phosphonium ionic liquids. Dalton Trans 44(46):20131–20138. doi:10.1039/c5dt03791c

    Article  Google Scholar 

  44. van den Berg C, Roelands CPM, Bussmann P, Goetheer E, Verdoes D, van der Wielen LAM (2009) Preparation and analysis of high capacity polysulfone capsules. React Funct Polym 69(10):766–770. doi:10.1016/j.reactfunctpolym.2009.06.008

    Article  Google Scholar 

  45. Blahusiak M, Schlosser S, Annus J (2015) Separation of butyric acid in fixed bed column with solvent impregnated resin containing ammonium ionic liquid. React Funct Polym 87:29–36. doi:10.1016/j.reactfunctpolym.2014.12.005

    Article  Google Scholar 

  46. Blahušiak M, Schlosser Š, Marták J (2011) Extraction of butyric acid by a solvent impregnated resin containing ionic liquid. React Funct Polym 71(7):736–744. doi:10.1016/j.reactfunctpolym.2011.04.002

    Article  Google Scholar 

  47. Abdolmohammad-Zadeh H, Galeh-Assadi M, Shabkhizan S, Mousazadeh H (2011) Sol-gel processed pyridinium ionic liquid-modified silica as a new sorbent for separation and quantification of iron in water samples. Arabian J Chem DOI. doi:10.1016/j.arabjc.2011.07.006

    Google Scholar 

  48. Liu Y, Zhu L, Sun X, Chen J, Luo F (2009) Silica materials doped with bifunctional ionic liquid extractant for yttrium extraction. Ind Eng Chem Res 48(15):7308–7313. doi:10.1021/ie900468c

    Article  Google Scholar 

  49. Negrea A, Lupa L, Ciopec M, Negrea P, Voda R, Ianasi C (2013) Study of different impregnation methods of inorganic supports with ionic liquids. J Environ Prot Ecol 14(4):1785–1793

    Google Scholar 

  50. Lupa L, Negrea A, Ciopec M, Negrea P (2013) Cs+ removal from aqueous solutions through adsorption onto florisil (R) impregnated with trihexyl(tetradecyl)phosphonium chloride. Molecules 18(10):12845–12856. doi:10.3390/molecules181012845

    Article  Google Scholar 

  51. Arias A, Saucedo I, Navarro R, Gallardo V, Martinez M, Guibal E (2011) Cadmium(II) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. React Funct Polym 71(11):1059–1070. doi:10.1016/j.reactfunctpolym.2011.07.008

    Article  Google Scholar 

  52. Gallardo V, Navarro R, Saucedo I, Avila M, Guibal E (2008) Zinc(II) extraction from hydrochloric acid solutions using amberlite XAD-7 impregnated with Cyphos IL 101 (tetradecyl(trihexyl)phosphonium chloride). Sep Sci Technol 43(9–10):2434–2459. doi:10.1080/01496390802119002

    Article  Google Scholar 

  53. Navarro R, Garcia E, Saucedo I, Guibal E (2012) Platinum(IV) recovery from HCl solutions using AMBERLITE XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. Sep Sci Technol 47(14–15):2199–2210. doi:10.1080/01496395.2012.697522

    Google Scholar 

  54. Navarro R, Saucedo I, Gonzalez C, Guibal E (2012) Amberlite XAD-7 impregnated with Cyphos IL-101 (tetraalkylphosphonium ionic liquid) for Pd(II) recovery from HCl solutions. Chem Eng J 185:226–235. doi:10.1016/j.cej.2012.01.090

    Article  Google Scholar 

  55. Navarro R, Saucedo I, Lira MA, Guibal E (2010) Gold(III) recovery from HCl solutions using Amberlite XAD-7 impregnated with an ionic liquid (Cyphos IL-101). Sep Sci Technol 45(12–13):1950–1962. doi:10.1080/01496395.2010.493116

    Article  Google Scholar 

  56. Hawkins CA, Momen MA, Garvey SL, Kestell J, Kaminski MD, Dietz ML (2015) Evaluation of solid-supported room-temperature ionic liquids containing crown ethers as media for metal ion separation and preconcentration. Talanta 135:115–123. doi:10.1016/j.talanta.2014.12.019

    Article  Google Scholar 

  57. Myasoedova GV, Molochnikova NP, Mokhodoeva OB, Myasoedov BF (2008) Application of ionic liquids for solid-phase extraction of trace elements. Anal Sci 24(10):1351–1353. doi:10.2116/analsci.24.1351

    Article  Google Scholar 

  58. Guibal E, Figuerola Piñol A, Ruiz M, Vincent T, Jouannin C, Sastre AM (2010) Immobilization of Cyphos ionic liquids in alginate capsules for Cd(II) sorption. Sep Sci Technol 45(12):1935–1949. doi:10.1080/01496395.2010.493113

    Article  Google Scholar 

  59. Vincent T, Parodi A, Guibal E (2008) Pt recovery using Cyphos IL-101 immobilized in biopolymer capsules. Sep Purif Technol 62(2):470–479. doi:10.1016/j.seppur.2008.02.025

    Article  Google Scholar 

  60. Vincent T, Parodi A, Guibal E (2008) Immobilization of Cyphos IL-101 in biopolymer capsules for the synthesis of Pd sorbents. React Funct Polym 68(7):1159–1169. doi:10.1016/j.reactfunctpolym.2008.04.001

    Article  Google Scholar 

  61. Navarro R, Ruiz P, Saucedo I, Guibal E (2014) Bismuth(III) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkylphosphonium ionic liquid. Sep Purif Technol 135:268–277. doi:10.1016/j.seppur.2014.02.023

    Article  Google Scholar 

  62. Lira MA, Navarro R, Saucedo I, Martinez M, Guibal E (2016) Influence of the textural characteristics of the support on Au(III) sorption from HCl solutions using Cyphos IL101-impregnated Amberlite resins. Chem Eng J 302:426–436. doi:10.1016/j.cej.2016.05.059

    Article  Google Scholar 

  63. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732. doi:10.1021/ja01864a025

    Article  Google Scholar 

  64. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. doi:10.1021/ja01269a023

    Article  Google Scholar 

  65. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. doi:10.1021/ja01145a126

    Article  Google Scholar 

  66. de Boer JH (1958) The shape of capillaries. In: Everett DH, Stone FS (eds) The structure and properties of porous materials, vol 10. Vol Colston Papers. Butterworth, London, p 68

    Google Scholar 

  67. Puigdomenech I (2010) MEDUSA (Make equilibrium diagrams using sophisticated algorithms). 32 bit version edn. Royal Institute of Technology, Stockholm, Sweden

  68. Cieszynska A, Wisniewski M (2011) Selective extraction of palladium(II) from hydrochloric acid solutions with phosphonium extractants. Sep Purif Technol 80(2):385–389. doi:10.1016/j.seppur.2011.05.025

    Article  Google Scholar 

  69. Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61(3):229–242. doi:10.1016/j.seppur.2007.10.002

    Article  Google Scholar 

  70. Tien C (1994) Adsorption calculations and modeling, Butterworth-Heinemann Series in Chemical Engineering. Butterworth-Heinemann, Newton

    Google Scholar 

  71. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  72. Matsumiya M, Suda S, Tsunashima K, Sugiya M, Kishioka S-Y, Matsuura H (2008) Electrochemical behaviors of multivalent complexes in room temperature ionic liquids based on quaternary phosphonium cations. J Electroanal Chem 622(2):129–135. doi:10.1016/j.jelechem.2008.04.021

    Article  Google Scholar 

  73. Kazama R, Matsumiya M, Tsuda N, Tsunashima K (2013) Electrochemical analysis of diffusion behavior and nucleation mechanism for Dy(II) and Dy(III) in phosphonium-based ionic liquids. Electrochim Acta 113:269–279. doi:10.1016/j.electacta.2013.09.082

    Article  Google Scholar 

  74. Marcus Y (1997) Ion properties. Marcel Dekker, Inc, New York

    Google Scholar 

  75. Campos K, Vincent T, Bunio P, Trochimczuk A, Guibal E (2008) Gold recovery from HCl solutions using Cyphos IL-101 (a quaternary phosphonium ionic liquid) immobilized in biopolymer capsules. Solvent Extr Ion Exch 26(5):570–601. doi:10.1080/07366290802301572

    Article  Google Scholar 

  76. Marták J, Schlosser Š (2007) Extraction of lactic acid by phosphonium ionic liquids. Sep Purif Technol 57(3):483–494. doi:10.1016/j.seppur.2006.09.013

    Article  Google Scholar 

  77. Marták J, Schlosser Š (2016) New mechanism and model of butyric acid extraction by phosphonium ionic liquid. J Chem Eng Data 61(9):2979–2996. doi:10.1021/acs.jced.5b01082

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Guanajuato University (CIIC 1,049/2016) and PRODEP, SEP (Project: “Recuperación de metales preciosos contenidos en disoluciones acuosas provenientes de fuentes secundarias”). Cytec (Canada) is acknowledged for the gift of Cyphos IL101 sample. The authors thank Guanajuato University-CONACYT National Laboratory for SEM-EDX analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Navarro or E. Guibal.

Electronic supplementary material

ESM 1

(DOCX 4351 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, R., Lira, M.A., Saucedo, I. et al. Amberlite XAD-1180 impregnation with Cyphos IL101 for the selective recovery of precious metals from HCl solutions. Gold Bull 50, 7–23 (2017). https://doi.org/10.1007/s13404-016-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-016-0190-8

Keywords

Navigation