Skip to main content
Log in

Solid-phase extraction and separation of heavy rare earths from chloride media using P227-impregnated resins

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A solid-phase extraction resin SIRs-P227/XAD-7HP was prepared by impregnating extractant P227 onto macroporous resin XAD-7HP beads. SIRs-P227/XAD-7HP beads were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS). The adsorption kinetics, particle size effect, adsorption isotherm, pHequilibrium–lgD relationship (where D is distribution coefficient), desorption, adsorption selectivity for heavy rare earths, and impurity ions were studied. The results showed that the adsorption kinetics of Lu(III) on the SIRs-P227/XAD-7HP beads fitted the Morris–Weber model best. The adsorbance decreased as the particle size increased. The pHequilibrium–lgD relationship fitted well with a straight line, and the slope was 1.56. The experimental data fitted well with Langmuir adsorption. The calculated maximum adsorption capacity was 23.8 mg·g−1, while the experimental datum was 22.7 mg·g−1 at the given conditions. The adsorbed Lu(III) can be easily stripped by 0.1 mol·L−1 HCl. The adsorption selectivity of SIRs-P227/XAD-7HP for heavy REs exhibited the following order: Lu > Yb > Tm > Er > Ho. The adjacent heavy rare earth (RE) separation factors βLu/Yb, βYb/Tm, βTm/Er, and βEr/Ho were 1.57, 3.00, 3.03, and 2.23, respectively, at liquid/solid ratio (L/S) equal to 3:20. The adsorption selectivity for impurity ions exhibited the following order: Fe > Lu > Tm > Zn > Mg > Ca > Ho > Co > Ni > Cu > Al.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiao YF, Huang XW, Feng ZY, Dong JS, Huang L, Long ZQ. Progress in the green extraction technology for rare earth from ion-adsorption type rare earths ore. Chin Rare Earths. 2015;36(3):109.

    CAS  Google Scholar 

  2. Hosseini MS, Bazrafshan AA, Hosseini-Bandegharaei A. A novel solvent-impregnated resin containing 3-hydroxy-2-naphthoic acid for stepwise extraction of Th(IV) and U(VI) over other coexistence ions. Sep Sci Technol. 2016;51(8):1328.

    CAS  Google Scholar 

  3. Sun Q, Yang LM, Zhang L, Huang ST, Xu Z. Extraction and separation of Fe(III) from heavy metal wastewater using P204 solvent impregnated resin. Rare Met. 2018;37(10):894.

    CAS  Google Scholar 

  4. Paramanik M, Panja S, Dhami PS, Yadav JS, Kaushik CP, Ghosh SK. Unique reversibility in extraction mechanism of U compared to solvent extraction for sorption of U(VI) and Pu(IV) by a novel solvent impregnated resin containing trialkylphosphine oxide functionalized ionic liquid. J Hazard Mater. 2018;354:125.

    CAS  Google Scholar 

  5. Saipriya G, Kumaresan R, Nayak PK, Venkatesan KA, Antony MP, Kumar T. Studies on the adsorption behavior of americium and europium on radiolytically degraded solvent impregnated resin containing neutral and acidic extractants. J Radioanal Nucl Chem. 2017;314(3):2557.

    CAS  Google Scholar 

  6. Chen B, Bao SX, Zhang YM, Zheng RW. A high-efficiency approach for the synthesis of N235-impregnated resins and the application in enhanced adsorption and separation of vanadium(V). Minerals. 2018;8(8):358.

    Google Scholar 

  7. Zheng RW, Bao SX, Zhang YM, Chen B. Synthesis of di-(2-ethylhexyl)phosphoric acid (D2EHPA)-tributyl phosphate (TBP) impregnated resin and application in adsorption of vanadium(IV). Minerals. 2018;8(5):206.

    Google Scholar 

  8. Li HM, Liu JS, Zhu LL, Gao XZ, Wei SL, Gu L, Zhang SX, Liu XY. Recovery of indium(III) from a hydrochloric acid medium with two types of solvent impregnated resins containing sec-octylphenoxy acetic acid. Solvent Extr Res Dev-Jpn. 2014;21:147.

    CAS  Google Scholar 

  9. Navarro R, Lira MA, Saucedo I, Alatorre A, Avila M, Guibal E. Amberlite XAD resins impregnated with ionic liquids for Au(III) recovery. In: Macromol Symp. 2017; 374(1): UNSP 1600134.

  10. Rao KUM, Yamada M. Sorption of palladium(II) using organophosphorus derivatives based on thiacalix[4] arene impregnated resins from hydrochloric media. Sep Sci Technol. 2017;52(7):1153.

    CAS  Google Scholar 

  11. Nishihama S, Kohata K, Yoshizuka K. Separation of lanthanum and cerium using a coated solvent-impregnated resin. Sep Purif Technol. 2013;118:511.

    CAS  Google Scholar 

  12. Inan S, Tel H, Sert S, Cetinkaya B, Sengul S, Ozkan B, Altas Y. Extraction and separation studies of rare earth elements using Cyanex 272 impregnated Amberlite XAD-7 resin. Hydrometallurgy. 2018;181:156.

    CAS  Google Scholar 

  13. Nazari AM, McNeice J, Ghahreman A. Selective heavy rare earth element extraction from dilute solutions using ultrasonically synthesized Cyanex 572 oil droplets and Cyanex 572-impregnated resin. J Ind Eng Chem. 2018;59:388.

    CAS  Google Scholar 

  14. Bao S, Hawker W, Vaughan J. Scandium loading on chelating and solvent impregnated resin from sulfate solution. Solvent Extr Ion Exc. 2018;36(1):100.

    Google Scholar 

  15. Ramzan M, Kifle D, Wibetoe G. Comparative study of stationary phases impregnated with acidic organophosphorus extractants for HPLC separation of rare earth elements. Sep Sci Technol. 2016;51(3):494.

    CAS  Google Scholar 

  16. Lee GS, Uchikoshi M, Mimura K, Isshiki M. Distribution coefficients of La, Ce, Pr, Nd, and Sm on Cyanex 923-, D2EHPA-, and PC88A-impregnated resins. Sep Purif Technol. 2009;67(1):79.

    CAS  Google Scholar 

  17. Kifle D, Wibetoe G, Froseth M, Bigelius J. Impregnation and characterization of high performance extraction columns for separation of metal ions. Solvent Extr Ion Exch. 2013;31(6):668.

    CAS  Google Scholar 

  18. Lee GS, Uchikoshi M, Mimura K, Isshiki M. Separation of major impurities Ce, Pr, Nd, Sm, Al, Ca, Fe, and Zn from La using bis(2-ethylhexyl)phosphoric acid (D2EHPA)-impregnated resin in a hydrochloric acid medium. Sep Purif Technol. 2010;71(2):186.

    CAS  Google Scholar 

  19. Shu Q, Khayambashi A, Wang X, Wei Y. Studies on adsorption of rare earth elements from nitric acid solution with macroporous silica-based bis(2-ethylhexyl)phosphoric acid impregnated polymeric adsorbent. Adsorpt Sci Technol. 2018;36(3–4):1049.

    CAS  Google Scholar 

  20. Matsunaga H, Ismail AA, Wakui Y, Yokoyama T. Extraction of rare earth elements with 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate impregnated resins having different morphology and reagent content. React Funct Polym. 2001;49(3):189.

    CAS  Google Scholar 

  21. Nishihama S, Harano T, Yoshizuka K. Silica-based solvent impregnated adsorbents for separation of rare earth metals. Sep Sci Technol. 2018;53(7):1027.

    CAS  Google Scholar 

  22. Habib M, Hafida M, Abdelkader T, Caroline B, Anne B. Study on the extraction of lanthanides by a mesoporous MCM-41 silica impregnated with Cyanex 272. Sep Purif Technol. 2019;209:359.

    Google Scholar 

  23. Kumar BN, Radhika S, Kantam ML, Reddy BR. Solid-liquid extraction of terbium from phosphoric acid solutions using solvent-impregnated resin containing TOPS 99. J Chem Technol Biot. 2011;86(4):562.

    CAS  Google Scholar 

  24. Helaly OS, Abd El-Ghany MS, Moustafa MI, Abuzaid AH, Abd El-Monem NM, Ismail IM. Extraction of cerium(IV) using tributyl phosphate impregnated resin from nitric acid medium. Trans Nonferrous Met Soc China. 2012;22(1):206.

    CAS  Google Scholar 

  25. Arkhipova AA, Statkus MA, Tsysin GI, Zolotov YA. Different approaches to solid-phase extraction of lanthanum with low-polar sorbents: comparison of dynamic coating, impregnation and on-line mixing. Sep Sci Technol. 2015;50(5):729.

    CAS  Google Scholar 

  26. Zhang A, Kuraoka E, Kumagai M. Preparation of a novel macroporous silica-based 2,6-bis(5,6-diisobutyl-1,2,4-triazine-3-yl)pyridine impregnated polymeric composite and its application in the adsorption for trivalent rare earths. J Radioanal Nucl Chem. 2007;274(3):455.

    CAS  Google Scholar 

  27. El-Sofany EA. Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. J Hazard Mater. 2008;153(3):948.

    CAS  Google Scholar 

  28. Zhang A, Mei C, Wei Y, Kumagai M. Preparation of a novel macroporous silica-based diglycolamide derivative-impregnated polymeric composite and its adsorption mechanism for rare earth metal ions. Adsorpt Sci Technol. 2007;25(5):257.

    Google Scholar 

  29. Mondal S, Ghar A, Satpati AK, Sinharoy P, Singh DK, Sharma JN, Sreenivas T, Kain V. Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin. Hydrometallurgy. 2019;185:93.

    CAS  Google Scholar 

  30. Gok C, Seyhan S, Merdivan M, Yurdakoc M. Separation and preconcentration of La3+, Ce3+ and Y3+ using calix[4] resorcinarene impregnated on polymeric support. Microchim Acta. 2007;157(1–2):13.

    CAS  Google Scholar 

  31. Mohamed WR, Metwally SS, Ibrahim HA, El-Sherief EA, Mekhamer HS, Moustafa IMI, Mabrouk EM. Impregnation of task-specific ionic liquid into a solid support for removal of neodymium and gadolinium ions from aqueous solution. J Mol Liq. 2017;236:9.

    CAS  Google Scholar 

  32. Sun XQ, Ji Y, Chen J, Ma JT. Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation. J Rare Earths. 2009;27(6):932.

    Google Scholar 

  33. Zhao ZY, Sun XQ, Dong YM, Wang YL. Synergistic effect of acid-base coupling bifunctional ionic liquids in impregnated resin for rare earth adsorption. ACS Sustain Chem Eng. 2016;4(2):616.

    CAS  Google Scholar 

  34. Liao CF, Jiao YF, Liang Y, Jiang PG, Nie HP. Adsorption-extraction mechanism of heavy rare earth by Cyanex272-P507 impregnated resin. Trans Nonferrous Met Soc China. 2010;20(8):1511.

    CAS  Google Scholar 

  35. Liao CF, Nie HP, Jiao YF, Liang Y, Yang SH. Study on the diffusion kinetics of adsorption of heavy rare earth with Cyanex272-P507 impregnated resin. J Rare Earths. 2010;28:120.

    Google Scholar 

  36. Aziz N, Mindaryani A, Supranto, Taftazani A, Biyantoro D. Effect of temperature to adsorption capacity and coefficient distribution on rare earth elements adsorption (Y, Gd, Dy) using SIR. In: IOP Conf. Series: Materials Science and Engineering, Semarang, Indonesia. 2018; 349: 012041.

  37. Yukio N, Yang BH. Solvent extraction of rare-earth metals with bis(2-ethylhexyl)phosphinic acid. Fresenius J Anal Chem. 1997;357(6):635.

    Google Scholar 

  38. Kim D, Han C, Lee J, Kim SD, Kim J. Synthesis of extraction resin containing bis(2-Ethylhexyl)phosphinic acid and separation of heavy rare earth elements (Gd, Tb). J Korean Soc Miner Energ Resour Eng. 2004;41(1):69.

    Google Scholar 

  39. Nishihama S, Sakaguchi N, Hirai T, Komasawa I. Extraction and separation of rare earth metals using microcapsules containing bis(2-ethylhexyl)phosphinic acid. Hydrometallurgy. 2002;64(1):35.

    CAS  Google Scholar 

  40. Du RB, An HY, Zhang SH, Yu DH, Xiao JC. Microwave-assisted synthesis of dialkylphosphinic acids and a structure-reactivity study in rare earth metal extraction. RSC Adv. 2015;5(126):104258.

    CAS  Google Scholar 

  41. Wang JL, Liu XY, Xu SM. Synthesis of high purity nonsymmetric dialkylphosphinic acid extractants. J Vis Exp. 2017;128:e56156.

    Google Scholar 

  42. Dominguez JR, Gonzalez T, Palo P, Cuerda-Correa EM. Removal of common pharmaceuticals present in surface waters by Amberlite XAD-7 acrylic-ester-resin: influence of pH and presence of other drugs. Desalination. 2011;269(1–3):231.

    CAS  Google Scholar 

  43. Wang JL, Xie MY, Liu XY, Wang HJ. Extractant (2-ethylhexyl)(2,4,4 ‘-trimethylpentyl)phosphinic acid (USTB-1): synthesis and its extraction and separation behaviors for rare earths from chloride media. Sep Purif Technol. 2018;194:188.

    Google Scholar 

  44. Wang JL, Liu XY, Fu JS, Xie MY, Huang GY, Wang HJ. Novel extractant (2,4-dimethylheptyl)(2,4,4′-trimethylpentyl)phosphinic acid (USTB-2) for rare earths extraction and separation from chloride media. Sep Purif Technol. 2019;209:789.

    CAS  Google Scholar 

  45. Draa MT, Belaid T, Benamor M. Extraction of Pb(II) by XAD7 impregnated resins with organophosphorus extractants (DEHPA, IONQUEST 801, CYANEX 272). Sep Purif Technol. 2004;40(1):77.

    CAS  Google Scholar 

  46. Wang JL, Xie MY, Ma JJ, Wang HJ, Xu SM. Extractant (2,3-dimethylbutyl)(2,4,4′-trimethylpentyl)phosphinic acid (INET-3) impregnated onto XAD-16 and its extraction and separation performance for heavy rare earths from chloride media. J Rare Earths. 2017;35(12):1239.

    CAS  Google Scholar 

  47. Koladkar DV, Dhadke PM. Solvent extraction of Sc(III) from sulfuric acid solution by bis (2-ethylhexyl) phosphinic acid in toluene. J Serb Chem Soc. 2002;67(4):265.

    CAS  Google Scholar 

  48. Radhika S, Nagaraju V, Kumar BN, Kantam ML, Reddy BR. Solid-liquid extraction of Gd(III) and separation possibilities of rare earths from phosphoric acid solutions using Tulsion CH-93 and Tulsion CH-90 resins. J Rare Earths. 2012;30(12):1270.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51974026 and 21301104), the National Key R&D Program of China (No. 2018YFC1900604) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-16019A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Lian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wu, SZ., Liu, XY. et al. Solid-phase extraction and separation of heavy rare earths from chloride media using P227-impregnated resins. Rare Met. 40, 2633–2644 (2021). https://doi.org/10.1007/s12598-020-01549-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01549-4

Keywords

Navigation