Skip to main content

Advertisement

Log in

Genomic analysis and filtration of novel prognostic biomarkers based on metabolic and immune subtypes in pancreatic cancer

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Patients with pancreatic cancer (PC) can be classified into various molecular subtypes and benefit from some precise therapy. Nevertheless, the interaction between metabolic and immune subtypes in the tumor microenvironment (TME) remains unknown. We hope to identify molecular subtypes related to metabolism and immunity in pancreatic cancer

Methods

Unsupervised consensus clustering and ssGSEA analysis were utilized to construct molecular subtypes related to metabolism and immunity. Diverse metabolic and immune subtypes were characterized by distinct prognoses and TME. Afterward, we filtrated the overlapped genes based on the differentially expressed genes (DEGs) between the metabolic and immune subtypes by lasso regression and Cox regression, and used them to build risk score signature which led to PC patients was categorized into high- and low-risk groups. Nomogram were built to predict the survival rates of each PC patient. RT-PCR, in vitro cell proliferation assay, PC organoid, immunohistochemistry staining were used to identify key oncogenes related to PC

Results

High-risk patients have a better response for various chemotherapeutic drugs in the Genomics of Drug Sensitivity in Cancer (GDSC) database. We built a nomogram with the risk group, age, and the number of positive lymph nodes to predict the survival rates of each PC patient with average 1-year, 2-year, and 3-year areas under the curve (AUCs) equal to 0.792, 0.752, and 0.751. FAM83A, KLF5, LIPH, MYEOV were up-regulated in the PC cell line and PC tissues. Knockdown of FAM83A, KLF5, LIPH, MYEOV could reduce the proliferation in the PC cell line and PC organoids

Conclusion

The risk score signature based on the metabolism and immune molecular subtypes can accurately predict the prognosis and guide treatments of PC, meanwhile, the metabolism-immune biomarkers may provide novel target therapy for PC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study can be downloaded from TCGA (https://portal.gdc.cancer.gov/), GTEx (https://www.gtexportal.org/home), and ICGC (https://icgc.org).

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020)

    Article  PubMed  Google Scholar 

  2. L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. Matrisian, Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. J.D. Mizrahi, R. Surana, J.W. Valle, R.T. Shroff, Pancreatic cancer. Lancet (London, England) 395, 2008–2020 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Qian, Y. Gong, Z. Fan, G. Luo, Q. Huang, S. Deng et al., Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 13, 130 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M.J. Pishvaian, E.M. Blais, J.R. Brody, E. Lyons, P. DeArbeloa, A. Hendifar et al., Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know your tumor registry trial. Lancet Oncol. 21, 508–518 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. Bailey, D.K. Chang, K. Nones, A.L. Johns, A.M. Patch, M.C. Gingras et al., Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. R.A. Moffitt, R. Marayati, E.L. Flate, K.E. Volmar, S.G. Loeza, K.A. Hoadley et al., Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. C. Qin, G. Yang, J. Yang, B. Ren, H. Wang, G. Chen et al., Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol. Cancer 19, 50 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  10. S. Sivakumar, I. de Santiago, L. Chlon, F. Markowetz, Master regulators of oncogenic KRAS response in pancreatic cancer: an integrative network biology analysis. PLoS Med. 14, e1002223 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  11. E.A. Collisson, P. Bailey, D.K. Chang, A.V. Biankin, Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207–220 (2019)

    Article  PubMed  Google Scholar 

  12. J.M. Karasinska, J.T. Topham, S.E. Kalloger, G.H. Jang, R.E. Denroche, L. Culibrk et al., Altered gene expression along the glycolysis-cholesterol synthesis axis is associated with outcome in pancreatic cancer. Clin. Cancer Res. 26, 135–146 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. K. Mehla, P.K. Singh, Metabolic subtyping for novel personalized therapies against pancreatic cancer. Clin. Cancer Res. 26, 6–8 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Y. He, Z. Jiang, C. Chen, X. Wang, Classification of triple-negative breast cancers based on immunogenomic profiling. J. Exp. Clin. Cancer Res. 37, 327 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia et al., Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013)

    Article  PubMed  Google Scholar 

  17. A. Mayakonda, D.C. Lin, Y. Assenov, C. Plass, H.P. Koeffler, Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Zhang, M. Shi, T. Chen, B. Zhang, Characterization of the immune cell infiltration landscape in head and neck squamous cell carcinoma to aid immunotherapy. Mol. Ther. Nucleic Acids 22, 298–309 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Sotiriou, P. Wirapati, S. Loi, A. Harris, S. Fox, J. Smeds et al., Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl. Cancer Inst. 98, 262–272 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. P. Jiang, S. Gu, D. Pan, J. Fu, A. Sahu, X. Hu et al., Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Charoentong, F. Finotello, M. Angelova, C. Mayer, M. Efremova, D. Rieder et al., Pan-cancer immunogenomic analyses reveal genotype-immunophenotype Relationships and Predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. S.F. Boj, C.I. Hwang, L.A. Baker, I.I. Chio, D.D. Engle, V. Corbo et al., Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. C. Riera-Domingo, A. Audigé, S. Granja, W.C. Cheng, P.C. Ho, F. Baltazar et al., Immunity, Hypoxia, and metabolism-the Ménage à Trois of cancer: implications for immunotherapy. Physiol. Rev. 100, 1–102 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. A. Neesse, C.A. Bauer, D. Öhlund, M. Lauth, M. Buchholz, P. Michl et al., Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 68, 159–171 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. H. Liu, J. Zhang, C. Wei, Z. Liu, W. Zhou, P. Yang et al., Prognostic signature construction of energy metabolism-related genes in pancreatic cancer. Front. Oncol. 12, 917897 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Q. Chen, N. Pu, H. Yin, J. Zhang, G. Zhao, W. Lou et al., A metabolism-relevant signature as a predictor for prognosis and therapeutic response in pancreatic cancer. Exp. Biol. Med. (Maywood) 247, 120–130 (2022)

    Article  CAS  PubMed  Google Scholar 

  27. H. Chen, F. Zu, T. Zeng, Z. Chen, J. Wei, P. Liu et al., Prognostic value and correlation with tumor immune infiltration of a novel metabolism-related gene signature in pancreatic cancer. Front. Oncol. 11, 757791 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. L.Y. Xie, H.Y. Huang, T. Fang, J.Y. Liang, Y.L. Hao, X.J. Zhang et al., A prognostic survival model of pancreatic adenocarcinoma based on metabolism-related gene expression. Front. Genet. 13, 804190 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Liu, Q. Liu, X. Zhang, M. Cui, T. Li, Y. Zhang et al., Immune subtyping for pancreatic cancer with implication in clinical outcomes and improving immunotherapy. Cancer Cell. Int. 21, 137 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Peng, B.F. Sun, C.Y. Chen, J.Y. Zhou, Y.S. Chen, H. Chen et al., Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Orhan, R.P. Vogelsang, M.B. Andersen, M.T. Madsen, E.R. Hölmich, H. Raskov et al., The prognostic value of tumour-infiltrating lymphocytes in pancreatic cancer: a systematic review and meta-analysis. Eur. J. Cancer (Oxford England: 1990) 132, 71–84 (2020)

    Article  CAS  Google Scholar 

  32. H. Zhuang, S. Huang, Z. Zhou, Z. Ma, Z. Zhang, C. Zhang et al., A four prognosis-associated lncRNAs (PALnc) based risk score system reflects immune cell infiltration and predicts patient survival in pancreatic cancer. Cancer Cell. Int. 20, 493 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D.R. Kroeger, K. Milne, B.H. Nelson, Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-Cell responses, and superior prognosis in ovarian cancer. Clin. Cancer Res. 22, 3005–3015 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. N. Hiraoka, Y. Ino, R. Yamazaki-Itoh, Y. Kanai, T. Kosuge, K. Shimada, Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br. J. Cancer 112, 1782–1790 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A.J.G. Rajamanickam, V. Bui, C. Bernard, B. Pucilowska, J. Ballesteros-Merino, Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology 10, 1900635 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  36. FR. Delvecchio, REA. Fincham, S. Spear, et al., Pancreatic Cancer Chemotherapy Is Potentiated by Induction of Tertiary Lymphoid Structures in Mice. Cell. Mol. Gastroenterol. Hepatol. 12(5), 1543–1565 (2021)

  37. C. Tekin, H.L. Aberson, M.F. Bijlsma, C.A. Spek, Early macrophage infiltrates impair pancreatic cancer cell growth by TNF-α secretion. BMC Cancer 20, 1183 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Z. Jiang, Z. Liu, M. Li, C. Chen, X. Wang, Increased glycolysis correlates with elevated immune activity in tumor immune microenvironment. EBioMedicine 42, 431–442 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  39. J. van den Bulk, EM. Verdegaal, NF. de Miranda, Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol 8(6), 180037 (2018)

  40. R. Tang, X. Liu, W. Wang, J. Hua, J. Xu, C. Liang et al., Role of tumor mutation burden-related signatures in the prognosis and immune microenvironment of pancreatic ductal adenocarcinoma. Cancer Cell Int. 21, 196 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H. Klett, H. Fuellgraf, E. Levit-Zerdoun, S. Hussung, S. Kowar, S. Küsters et al., Identification and validation of a diagnostic and prognostic multi-gene biomarker panel for pancreatic ductal adenocarcinoma. Front. Genet. 9, 108 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  42. P.P. Almeida, C.P. Cardoso, L.M. de Freitas, PDAC-ANN: an artificial neural network to predict pancreatic ductal adenocarcinoma based on gene expression. BMC Cancer 20, 82 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Wang, X. Li, J. Zhang, Q. Yang, W. Chen, W. Jin et al., AHNAK2 is a novel prognostic marker and oncogenic protein for clear cell renal cell carcinoma. Theranostics 7, 1100–1113 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. G. Liu, Z. Guo, Q. Zhang, Z. Liu, D. Zhu, AHNAK2 promotes migration, invasion, and epithelial-mesenchymal transition in lung adenocarcinoma cells via the TGF-β/Smad3 pathway. OncoTargets Ther. 13, 12893–12903 (2020)

    Article  CAS  Google Scholar 

  45. M. Zheng, J. Liu, T. Bian, L. Liu, H. Sun, H. Zhou et al., Correlation between prognostic indicator AHNAK2 and immune infiltrates in lung adenocarcinoma. Int. Immunopharmacol. 90, 107134 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. L. Zheng, S. Li, X. Zheng, R. Guo, W. Qu, AHNAK2 is a novel prognostic marker and correlates with immune infiltration in papillary thyroid cancer: evidence from integrated analysis. Int. Immunopharmacol. 90, 107185 (2021)

    Article  CAS  PubMed  Google Scholar 

  47. H. Zhuang, X. Chen, Y. Wang, et al., Identification of LIPH as an unfavorable biomarkers correlated with immune suppression or evasion in pancreatic cancer based on RNA-seq. Cancer Immunol Immunother 71(3), 601–612 (2022)

  48. Y. Li, X. Zhou, Q. Zhang, E. Chen, Y. Sun, D. Ye et al., Lipase member H is a downstream molecular target of hypoxia inducible factor-1α and promotes papillary thyroid carcinoma cell migration in BCPAP and KTC-1 cell lines. Cancer Manag. Res. 11, 931–941 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Zhang, X. Zhu, X. Qiao, X. Gu, J. Xue, Y. Han et al., LIPH promotes metastasis by enriching stem-like cells in triple-negative breast cancer. J. Cell. Mol. Med. 24, 9125–9134 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. W. Xia, H. Bai, Y. Deng, Y. Yang, PLA2G16 is a mutant p53/KLF5 transcriptional target and promotes glycolysis of pancreatic cancer. J. Cell. Mol. Med. 24, 12642–12655 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. J. Zhong, A. Jermusyk, L. Wu, J.W. Hoskins, I. Collins, E. Mocci et al., A transcriptome-wide Association Study identifies novel candidate susceptibility genes for pancreatic cancer. J. Natl. Cancer Inst. 112, 1003–1012 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  52. J. Li, S. Yuan, R.J. Norgard, F. Yan, Y.H. Sun, I.K. Kim et al., Epigenetic and transcriptional control of the epidermal growth factor receptor regulates the tumor immune microenvironment in pancreatic cancer. Cancer Discov. 11, 736–753 (2021)

    Article  PubMed  Google Scholar 

  53. E. Liang, Y. Lu, Y. Shi, Q. Zhou, F. Zhi, MYEOV increases HES1 expression and promotes pancreatic cancer progression by enhancing SOX9 transactivity. Oncogene 39, 6437–6450 (2020)

    Article  CAS  PubMed  Google Scholar 

  54. R. Tang, J. Ji, J. Ding, J. Huang, B. Gong, X. Zhang et al., Overexpression of MYEOV predicting poor prognosis in patients with pancreatic ductal adenocarcinoma. Cell Cycle (Georgetown Tex) 19, 1602–1610 (2020)

    Article  CAS  PubMed  Google Scholar 

  55. R. Zhang, A. Ma, High expression of MYEOV reflects poor prognosis in non-small cell lung cancer. Gene 770, 145337 (2021)

    Article  CAS  PubMed  Google Scholar 

  56. S. Atay, Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ 8, e10141 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  57. C. Zhou, Y. Liang, L. Zhou, et al., TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy 17(10), 3175-3195 (2021)

  58. S. Chen, J. Huang, Z. Liu, Q. Liang, N. Zhang, Y. Jin, FAM83A is amplified and promotes cancer stem cell-like traits and chemoresistance in pancreatic cancer. Oncogenesis 6, e300 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M. Zhang, C. Huo, Y. Jiang, J. Liu, Y. Yang, Y. Yin et al., AURKA and FAM83A are prognostic biomarkers and correlated with tumor-infiltrating lymphocytes in smoking related lung adenocarcinoma. J. Cancer 12, 1742–1754 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. F. Zhou, X. Wang, F. Liu, Q. Meng, Y. Yu, FAM83A drives PD-L1 expression via ERK signaling and FAM83A/PD-L1 co-expression correlates with poor prognosis in lung adenocarcinoma. Int. J. Clin. Oncol. 25, 1612–1623 (2020)

    Article  CAS  PubMed  Google Scholar 

  61. V.P. Balachandran, M. Gonen, J.J. Smith, R.P. DeMatteo, Nomograms in oncology: more than meets the eye. Lancet Oncol. 16, e173-180 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  62. S. Zeng, M. Pöttler, B. Lan, R. Grützmann, C. Pilarsky, H. Yang, Chemoresistance in Pancreatic Cancer. Int J Mol Sci 20(18), 4504 (2019)

Download references

Acknowledgements

Thanks to all who have contributed to the process of my writing this article. Especially, thanks to my girlfriend NR P who supported me in my life. At last, I’d like to thank those leaders, teachers, and my families who have encouraged me.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No.81972258, No.81974376, No. 82103016, No. 82172836, No.82272917); Natural Science Foundation of Beijing (No. 7192157); CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-1-I2M-002); National Key R&D Program of China (2018YFE0118600); National High Level Hospital Clinical Research Funding 2022-PUMCH-D-001; China Postdoctoral Science Foundation (2021T140071 and 2021M690462), Youth Research Fund of Peking Union Medical College Hospital (pumch201911710, pumch201910819), National High Level Hospital Clinical Research Funding 2022-PUMCH-A-245, National High Level Hospital Clinical Research Funding 2022-PUMCH-A-056, and Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT32014).

Author information

Authors and Affiliations

Authors

Contributions

GC analyzed the data and wrote the manuscript. TZ and YZ conceived the study and obtained financial support. , YL, DS, JL applied guiding suggestions, GY, JQ, FZ, JT,HH,XJ prepared the dataset. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Taiping Zhang or Yupei Zhao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.35 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Liu, Y., Su, D. et al. Genomic analysis and filtration of novel prognostic biomarkers based on metabolic and immune subtypes in pancreatic cancer. Cell Oncol. 46, 1691–1708 (2023). https://doi.org/10.1007/s13402-023-00836-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00836-3

Keywords

Navigation