Skip to main content

Advertisement

Log in

TIMEAS, a promising method for the stratification of testicular germ cell tumor patients with distinct immune microenvironment, clinical outcome and sensitivity to frontline therapies

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

With the heterogeneous genetic background, prognosis prediction and therapeutic targets for testicular germ cell tumors (TGCTs) are still unclear. We defined the tumor immune microenvironment activation status (TIMEAS).

Methods

We collected a total of 314 TGCT patients from four cohorts, including a 48-case microarray. A nonnegative matrix factorization algorithm was applied to identify the “immune factor”, derived the top 150 weighted genes to divide patients into immune and non-immune classes, and further separated the immune class into activated and exhausted subgroups by nearest template prediction. Tumor mutant burden, gene mutation, and copy number alteration were compared with our recently developed package “MOVICS”. A random forest algorithm was performed to establish a prediction model with fewer genes. Immunohistochemistry staining was performed to identify TIMEAS in the microarray.

Results

We constructed the TIMEAS in the TCGA-TGCT cohort and further validated it in the GSE3218 and GSE99420 cohorts. The immune class contained the activated status of T-lymphocytes, B-lymphocytes, and macrophages, while Treg cells and the WNT/TGFβ signature were more activated in the immune-suppressed subgroup. Patients in the immune-exhausted subgroup had the worst prognosis, and 22.9% of patients in the immune-activated subgroup had KRAS mutations, which might stimulate the response of the immune system and lead to a favorable prognosis. The immune-exhausted group benefited more from chemotherapy, while the immune-activated subgroup responded well to anti-PD-1/PD-L1 therapy. FSCN1 was validated as the target of the immune-exhausted microenvironment by immunohistochemistry.

Conclusion

TIMEAS classification can separate TGCT patients; patients in the immune-activated subgroup could benefit more from anti-PD-L1 immunotherapy, and those in the immune-exhausted subgroup are more suitable for chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw data for this study were generated at the corresponding archives. Derived data supporting the findings are available from the corresponding author [LCZ] upon reasonable request.

References

  1. K.A. McGlynn, M.B. Cook, Future Oncol. 5, 1389–1402 (2009). https://doi.org/10.2217/fon.09.116

    Article  PubMed  Google Scholar 

  2. A.A. Ghazarian, B. Trabert, S.S. Devesa, K.A. McGlynn, Andrology 3, 13–18 (2015). https://doi.org/10.1111/andr.288

    Article  CAS  PubMed  Google Scholar 

  3. P. Carrière, P. Baade, L. Fritschi, J. Urol. 178, 125–128 (2007)

    Article  PubMed  Google Scholar 

  4. J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Int. J. Cancer 136, E359–E386 (2015). https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  5. O. Khan, A. Protheroe, Postgrad. Med. J. 83, 624–632 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H.J. Schmoll, R. Souchon, S. Krege, P. Albers, J. Beyer, C. Kollmannsberger, S.D. Fossa, N.E. Skakkebaek, R. de Wit, K. Fizazi, J.P. Droz, G. Pizzocaro, G. Daugaard, P.H.M. de Mulder, A. Horwich, T. Oliver, R. Huddart, G. Rosti, L. Paz Ares, O. Pont, J.T. Hartmann, N. Aass, F. Algaba, M. Bamberg, I. Bodrogi, C. Bokemeyer, J. Classen, S. Clemm, S. Culine, M. de Wit, H.G. Derigs, K.P. Dieckmann, M. Flasshove, X. Garcia del Muro, A. Gerl, J.R. Germa-Lluch, M. Hartmann, A. Heidenreich, W. Hoeltl, J. Joffe, W. Jones, G. Kaiser, O. Klepp, S. Kliesch, L. Kisbenedek, K.U. Koehrmann, M. Kuczyk, M.P. Laguna, O. Leiva, V. Loy, M.D. Mason, G.M. Mead, R.P. Mueller, N. Nicolai, G.O.N. Oosterhof, T. Pottek, O. Rick, H. Schmidberger, F. Sedlmayer, W. Siegert, U. Studer, S. Tjulandin, Ann. Oncol. 15, 1377–1399 (2004) von der Maase, P. Walz, S. Weinknecht, L. Weissbach, E. Winter and C. Wittekind

    Article  CAS  PubMed  Google Scholar 

  7. F. Bremmer, C.L. Behnes, S. Schweyer, Pathologe 35, 238–244 (2014). https://doi.org/10.1007/s00292-014-1900-8

    Article  CAS  PubMed  Google Scholar 

  8. V. Seetharam, Z.B.M. Hameed, S.B. Talengala, J. Thomas, BMJ Case Rep. 2014 (2014) https://doi.org/10.1136/bcr-2013-203085

  9. P. Chieffi, Intractable Rare Dis Res 6, 319–321 (2017). https://doi.org/10.5582/irdr.2017.01070

    Article  PubMed  PubMed Central  Google Scholar 

  10. P. Chieffi, Mini Rev. Med. Chem. 11, 1075–1081 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. J.S. Parker, M. Mullins, M.C.U. Cheang, S. Leung, D. Voduc, T. Vickery, S. Davies, C. Fauron, X. He, Z. Hu, J.F. Quackenbush, I.J. Stijleman, J. Palazzo, J.S. Marron, A.B. Nobel, E. Mardis, T.O. Nielsen, M.J. Ellis, C.M. Perou, P.S. Bernard, J. Clin. Oncol. 27, 1160–1167 (2009). https://doi.org/10.1200/JCO.2008.18.1370

    Article  PubMed  PubMed Central  Google Scholar 

  12. W. Choi, S. Porten, S. Kim, D. Willis, E.R. Plimack, J. Hoffman-Censits, B. Roth, T. Cheng, M. Tran, I.L. Lee, J. Melquist, J. Bondaruk, T. Majewski, S. Zhang, S. Pretzsch, K. Baggerly, A. Siefker-Radtke, B. Czerniak, C.P.N. Dinney, D.J. McConkey, Cancer Cell. 25, 152–165 (2014). https://doi.org/10.1016/j.ccr.2014.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Batool, N. Karimi, X.-N. Wu, S.-R. Chen, Y.-X. Liu, Cell. Mol. Life Sci. 76, 1713–1727 (2019). https://doi.org/10.1007/s00018-019-03022-7

    Article  CAS  PubMed  Google Scholar 

  14. D.D. Lee, H.S. Seung, Nature 401, 788–791 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. R.A. Moffitt, R. Marayati, E.L. Flate, K.E. Volmar, S.G.H. Loeza, K.A. Hoadley, N.U. Rashid, L.A. Williams, S.C. Eaton, A.H. Chung, J.K. Smyla, J.M. Anderson, H.J. Kim, D.J. Bentrem, M.S. Talamonti, C.A. Iacobuzio-Donahue, M.A. Hollingsworth, J.J. Yeh, Nat. Genet. 47, 1168–1178 (2015). https://doi.org/10.1038/ng.3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Meng, X. Lu, Y. Zhou, M. Zhang, Q. Ge, J. Zhou, Z. Hao, S. Gao, F. Yan, C. Liang, Mol. Ther. Oncolytics 20, 410–421 (2021). https://doi.org/10.1016/j.omto.2021.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia, V. Treviño, H. Shen, P.W. Laird, D.A. Levine, S.L. Carter, G. Getz, K. Stemke-Hale, G.B. Mills, R.G.W. Verhaak, Nat. Commun. 4, 2612 (2013). https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  18. X. Lu, J. Meng, Y. Zhou, L. Jiang, F. Yan, Bioinformatics (2020) https://doi.org/10.1093/bioinformatics/btaa1018

  19. C.H. Mermel, S.E. Schumacher, B. Hill, M.L. Meyerson, R. Beroukhim, G. Getz, Genome Biol 12, R41 (2011) https://doi.org/10.1186/gb-2011-12-4-r41

  20. Y. Yin, L. Xu, Y. Chang, T. Zeng, X. Chen, A. Wang, J. Groth, W.-C. Foo, C. Liang, H. Hu, J. Huang, Mol. Cancer 18, 11 (2019) https://doi.org/10.1186/s12943-019-0941-2

  21. J. Chen, C. Zhan, L. Zhang, L. Zhang, Y. Liu, Y. Zhang, H. Du, C. Liang, X. Chen, Inflammation 42, 1705–1718 (2019). https://doi.org/10.1007/s10753-019-01030-0

    Article  CAS  PubMed  Google Scholar 

  22. A. Paschalis, B. Sheehan, R. Riisnaes, D.N. Rodrigues, B. Gurel, C. Bertan, A. Ferreira, M.B.K. Lambros, G. Seed, W. Yuan, D. Dolling, J.C. Welti, A. Neeb, S. Sumanasuriya, P. Rescigno, D. Bianchini, N. Tunariu, S. Carreira, A. Sharp, W. Oyen, J.S. de Bono, Eur. Urol. 76, 469–478 (2019). https://doi.org/10.1016/j.eururo.2019.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, J.P. Mesirov, Nat. Genet. 38, 500–501 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. J. Meng, Y. Zhou, X. Lu, Z. Bian, Y. Chen, J. Zhou, L. Zhang, Z. Hao, M. Zhang, C. Liang, Mol. Oncol. 15, 1358–1375 (2021). https://doi.org/10.1002/1878-0261.12887

    Article  CAS  PubMed  Google Scholar 

  25. K.N. Sivanathan, S. Gronthos, D. Rojas-Canales, B. Thierry, P.T. Coates, Stem Cell. Rev. Rep. 10, 351–375 (2014). https://doi.org/10.1007/s12015-014-9495-2

    Article  CAS  PubMed  Google Scholar 

  26. E. Batlle, J. Massagué, Immunity 50, 924–940 (2019). https://doi.org/10.1016/j.immuni.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Dong, X. Li, L. Zhang, Q. Zhu, C. Chen, J. Bao, Y. Chen, BMC Immunol. 20, 27 (2019). https://doi.org/10.1186/s12865-019-0309-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J.-F. Liu, L. Wu, L.-L. Yang, W.-W. Deng, L. Mao, H. Wu, W.-F. Zhang, Z.-J. Sun, J. Exp. Clin. Cancer Res. 37, 44 (2018). https://doi.org/10.1186/s13046-018-0713-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. B.A. Youngblood, J. Leung, R. Falahati, J. Williams, J. Schanin, E.C. Brock, B. Singh, A.T. Chang, J.A. O’Sullivan, R.P. Schleimer, N. Tomasevic, C.R. Bebbington, B.S. Bochner, Cells 10 (2020) https://doi.org/10.3390/cells10010019

  30. E. Rajpert-De, Meyts, Andrology 7, 391–393 (2019). https://doi.org/10.1111/andr.12675

    Article  Google Scholar 

  31. P. Chieffi, M. De Martino, F. Esposito, Expert Rev. Anticancer Ther. 20, 189–195 (2020). https://doi.org/10.1080/14737140.2020.1736566

    Article  CAS  PubMed  Google Scholar 

  32. J. Houldsworth, J.E. Korkola, G.J. Bosl, R.S.K. Chaganti, J. Clin. Oncol. 24, 5512–5518 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. T. Fukawa, H.-O. Kanayama, Int. J. Urol. 25, 337–344 (2018). https://doi.org/10.1111/iju.13519

    Article  PubMed  Google Scholar 

  34. P.J. Siska, R.A.N. Johnpulle, A. Zhou, J. Bordeaux, J.Y. Kim, B. Dabbas, N. Dakappagari, J.C. Rathmell, W.K. Rathmell, A.K. Morgans, J.M. Balko, D.B. Johnson, Oncoimmunology 6, e1305535 (2017) https://doi.org/10.1080/2162402X.2017.1305535

  35. N. Yu, M.-J. Wu, J.-X. Liu, C.-H. Zheng, Y. Xu, IEEE Trans. Cybern 51, 3952–3963 (2021). https://doi.org/10.1109/TCYB.2020.3000799

    Article  PubMed  Google Scholar 

  36. J. Pan, N. Gillis, IEEE Trans. Pattern Anal. Mach. Intell. 43, 1546–1561 (2021). https://doi.org/10.1109/TPAMI.2019.2956046

    Article  PubMed  Google Scholar 

  37. Y. Hoshida, PLoS One 5, e15543 (2010). https://doi.org/10.1371/journal.pone.0015543

  38. G. Bindea, B. Mlecnik, M. Tosolini, A. Kirilovsky, M. Waldner, A.C. Obenauf, H. Angell, T. Fredriksen, L. Lafontaine, A. Berger, P. Bruneval, W.H. Fridman, C. Becker, F. Pagès, M.R. Speicher, Z. Trajanoski, J. Galon, Immunity 39, 782–795 (2013). https://doi.org/10.1016/j.immuni.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  39. T. Strohmeyer, S. Peter, M. Hartmann, S. Munemitsu, R. Ackermann, A. Ullrich, D.J. Slamon, Cancer Res. 51, 1811–1816 (1991)

    CAS  PubMed  Google Scholar 

  40. S.L. Woldu, J.F. Amatruda, A. Bagrodia, Curr. Opin. Urol. 27, 41–47 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Malumbres, M. Barbacid, Nat. Rev. Cancer 3, 459–465 (2003). https://doi.org/10.1038/nrc1097

    Article  CAS  PubMed  Google Scholar 

  42. C.M. Kelly, L. Gutierrez Sainz, P. Chi, J. Hematol. Oncol. 14, 2 (2021) https://doi.org/10.1186/s13045-020-01026-6

  43. H. Joensuu, E. Wardelmann, H. Sihto, M. Eriksson, K. Sundby Hall, A. Reichardt, J.T. Hartmann, D. Pink, S. Cameron, P. Hohenberger, S.-E. Al-Batran, M. Schlemmer, S. Bauer, B. Nilsson, R. Kallio, J. Junnila, A. Vehtari, P. Reichardt, JAMA Oncol. 3, 602–609 (2017). https://doi.org/10.1001/jamaoncol.2016.5751

    Article  PubMed  PubMed Central  Google Scholar 

  44. F.E. von Eyben, J. Parraga-Alava, Int. J. Mol. Sci. 21 (2020) https://doi.org/10.3390/ijms21124487

  45. G. Bignell, R. Smith, C. Hunter, P. Stephens, H. Davies, C. Greenman, J. Teague, A. Butler, S. Edkins, C. Stevens, S. O’Meara, A. Parker, T. Avis, S. Barthorpe, L. Brackenbury, G. Buck, J. Clements, J. Cole, E. Dicks, K. Edwards, S. Forbes, M. Gorton, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, D. Jones, V. Kosmidou, R. Laman, R. Lugg, A. Menzies, J. Perry, R. Petty, K. Raine, R. Shepherd, A. Small, H. Solomon, Y. Stephens, C. Tofts, J. Varian, A. Webb, S. West, S. Widaa, A. Yates, A.J.M. Gillis, H.J. Stoop, R.J.H.L.M. van Gurp, J.W. Oosterhuis, L.H.J. P.A. Looijenga, Futreal, R. Wooster and M.R. Stratton, Genes Chromosomes Cancer 45, 42–46 (2006)

  46. M. Yeste-Velasco, T. Guo, X. Mao, E. Stankiewicz, G. Scandura, H. Li, C.S. Wang, S. Kudahetti, T. Oliver, D. Berney, J. Shamash, Y.-J. Lu, Am. J. Cancer Res. 9, 855–871 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. R. Nakayama, J.P. Jagannathan, N. Ramaiya, M.L. Ferrone, C.P. Raut, J.E. Ready, J.L. Hornick, A.J. Wagner, BMC Cancer 18, 1296 (2018). https://doi.org/10.1186/s12885-018-5188-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Y. Chen, T. Tian, Z.-Y. Li, C.-Y. Wang, R. Deng, W.-Y. Deng, A.-K. Yang, Y.-F. Chen, H. Li, Cell. Death Dis. 10, 356 (2019). https://doi.org/10.1038/s41419-019-1574-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. Zhang, Z. Zhao, X. Duan, P. Chen, Z. Peng, H. Qiu, J. Cell. Physiol. 233, 4748–4758 (2018). https://doi.org/10.1002/jcp.26264

    Article  CAS  PubMed  Google Scholar 

  50. C.-Q. Wang, C.-H. Tang, Y. Wang, L. Jin, Q. Wang, X. Li, G.-N. Hu, B.-F. Huang, Y.-M. Zhao, C.-M. Su, Sci. Rep. 7, 15887 (2017). https://doi.org/10.1038/s41598-017-16196-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the patients and investigators who participated in the corresponding medical project for providing data.

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers: 82170787, 82071637, 81973145]; the Supporting Project for Distinguished Young Scholars of Anhui Colleges [grant number: gxyqZD2019018]; the National Key R&D Program of China (2019YFC1711000), and the Key R&D Program of Jiangsu Province [Social Development] (BE2020694).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MJL, GJJ and LCZ; methodology, MJL, GR, LXF, and ZXS; formal analysis, MJL, LXF, YFR and WHT; writing the original draft, LX, LY and HZY; visualization, MJL, LX, LXF and WHT; funding acquisition, HZY, ZXS and LCZ; supervision, LCZ and ZXS.

Corresponding authors

Correspondence to Zongyao Hao, Xiansheng Zhang or Chaozhao Liang.

Ethics declarations

Ethics approval and consent to participate

Ethical approval for the microarray was obtained from the Ethics Committee of the First Affiliated Hospital of Anhui Medical University (PJ-2022-06-36), and patient consent for the retrospective cohorts was waived. As the other data used in this study are publicly available, no ethical approval was needed.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Conflicts of interest

The authors have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 636 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Gao, J., Li, X. et al. TIMEAS, a promising method for the stratification of testicular germ cell tumor patients with distinct immune microenvironment, clinical outcome and sensitivity to frontline therapies. Cell Oncol. 46, 745–759 (2023). https://doi.org/10.1007/s13402-023-00781-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00781-1

Keywords

Navigation