Skip to main content
Log in

LINC01419 promotes cell proliferation and metastasis in hepatocellular carcinoma by enhancing NDRG1 promoter activity

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Emerging evidence indicates that dysfunction of long non-coding RNAs (lncRNAs) plays an essential role in the initiation and progression of hepatocellular carcinoma (HCC). In this study we investigated the potential roles and molecular mechanisms involving LINC01419 in HCC.

Methods

The expression of LINC01419 in 40 pairs of HCC/normal tissues and 6 HCC cell lines was detected by qRT-PCR. MTS, EdU, colony formation, scratch wound-healing and transwell assays were performed to assess the role of LINC01419 in HCC cell (SMMC7721 and SK-Hep1) proliferation, migration and invasion in vitro. Artificial modulation of LINC01419 (up- and downregulation) was performed to explore the role of LINC01419 in tumor growth and metastasis in vivo. Interaction of LINC01419 with NDRG1 was assessed using qRT-PCR, RNA sequencing, Western blotting and immunohistochemistry. Physical interaction of LINC01419 with the NDRG1 promoter was assessed using a dual-luciferase reporter assay.

Results

We observed LINC01419 overexpression in primary HCC tissues and HCC cell lines and that this overexpression positively correlated with large tumor size, increased vascular invasion and advanced TNM stage in 40 HCC patients. Exogenous LINC01419 expression significantly promoted HCC cell proliferation, migration and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, we found that LINC01419 expression knockdown elicited opposite effects. Mechanistic investigations revealed that LINC01419 exerted its biological effects by regulating NDRG1. A dual-luciferase reporter assay revealed that LINC01419 interacts with a specific region within the NDRG1 promoter, resulting in its activation.

Conclusions

From our data we conclude that LINC01419 acts clinically, functionally and mechanistically oncogenic in HCC. LINC01419 may, therefore, serve as a promising prognostic indicator and therapeutic target for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  Google Scholar 

  2. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017)

    Article  Google Scholar 

  3. A. Forner, M. Reig, J. Bruix, Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018)

    Article  Google Scholar 

  4. P.R. Galle, A. Forner, J.M. Llovet, V. Mazzaferro, F. Piscaglia, J.L. Raoul, P. Schirmacher, V. Vilgrain, EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018)

    Article  Google Scholar 

  5. K. Schulze, J.C. Nault, A. Villanueva, Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J. Hepatol. 65, 1031–1042 (2016)

    Article  CAS  Google Scholar 

  6. R. Pinyol, R. Montal, L. Bassaganyas, D. Sia, T. Takayama, G.Y. Chau, V. Mazzaferro, S. Roayaie, H.C. Lee, N. Kokudo, Z. Zhang, S. Torrecilla, A. Moeini, L. Rodriguez-Carunchio, E. Gane, C. Verslype, A.E. Croitoru, U. Cillo, M. de la Mata, L. Lupo, S. Strasser, J.W. Park, J. Camps, M. Solé, S.N. Thung, A. Villanueva, C. Pena, G. Meinhardt, J. Bruix, J.M. Llovet, Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut 68, 1065–1075 (2019)

    Article  Google Scholar 

  7. X. Zhou, A. Zhu, X. Gu, G. Xie, Inhibition of MEK suppresses hepatocellular carcinoma growth through independent MYC and BIM regulation. Cell. Oncol. 42, 369–380 (2019)

    Article  CAS  Google Scholar 

  8. K.R. Zahid, S. Han, F. Zhou, U. Raza, Novel tumor suppressor SPRYD4 inhibits tumor progression in hepatocellular carcinoma by inducing apoptotic cell death. Cell. Oncol. 42, 55–66 (2019)

    Article  CAS  Google Scholar 

  9. F. Kopp, J.T. Mendell, Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018)

    Article  CAS  Google Scholar 

  10. M. Klingenberg, A. Matsuda, S. Diederichs, T. Patel, Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J. Hepatol. 67, 603–618 (2017)

    Article  CAS  Google Scholar 

  11. M.A. Parasramka, S. Maji, A. Matsuda, I.K. Yan, T. Patel, Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol. Ther. 161, 67–78 (2016)

    Article  CAS  Google Scholar 

  12. R. Castro-Oropeza, J. Melendez-Zajgla, V. Maldonado, K. Vazquez-Santillan, The emerging role of lncRNAs in the regulation of cancer stem cells. Cell. Oncol. 41, 585–603 (2018)

    Article  Google Scholar 

  13. A.M. Schmitt, H.Y. Chang, Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452–463 (2016)

    Article  CAS  Google Scholar 

  14. Y. Song, C. Liu, X. Liu, J. Trottier, M. Beaudoin, L. Zhang, C. Pope, G. Peng, O. Barbier, X. Zhong, L. Li, L. Wang, H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology 66, 1183–1196 (2017)

    Article  CAS  Google Scholar 

  15. N. Zhang, X. Chen, A positive feedback loop involving the LINC00346/β-catenin/MYC axis promotes hepatocellular carcinoma development. Cell. Oncol. 43, 137–153 (2020)

    Article  Google Scholar 

  16. Z.Z. Chen, L. Huang, Y.H. Wu, W.J. Zhai, P.P. Zhu, Y.F. Gao, LncSox4 promotes the self-renewal of liver tumour-initiating cells through Stat3-mediated Sox4 expression. Nat. Commun. 7, 12598 (2016)

    Article  CAS  Google Scholar 

  17. Z. Li, J. Zhang, X. Liu, S. Li, Q. Wang, C. Di, Z. Hu, T. Yu, J. Ding, J. Li, M. Yao, J. Fan, S. Huang, Q. Gao, Y. Zhao, X. He, The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat. Commun. 9, 1572 (2018)

    Article  Google Scholar 

  18. Y.L. Wang, J.Y. Liu, J.E. Yang, X.M. Yu, Z.L. Chen, Y.J. Chen, M. Kuang, Y. Zhu, S.M. Zhuang, Lnc-UCID promotes G1/S transition and hepatoma growth by preventing DHX9-mediated CDK6 down-regulation. Hepatology 70, 259–275 (2019)

  19. J. Zhang, Z. Li, L. Liu, Q. Wang, S. Li, D. Chen, Z. Hu, T. Yu, J. Ding, J. Li, M. Yao, S. Huang, Y. Zhao, X. He, Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology 67, 171–187 (2018)

    Article  CAS  Google Scholar 

  20. C.M. Wong, F.H. Tsang, I.O. Ng, Non-coding RNAs in hepatocellular carcinoma: Molecular functions and pathological implications. Nat. Rev. Gastroenterol. Hepatol. 15, 137–151 (2018)

    Article  CAS  Google Scholar 

  21. Y. Wang, L. He, Y. Du, P. Zhu, G. Huang, J. Luo, X. Yan, B. Ye, C. Li, P. Xia, G. Zhang, Y. Tian, R. Chen, Z. Fan, The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16, 413–425 (2015)

    Article  CAS  Google Scholar 

  22. S.X. Yuan, J. Wang, F. Yang, Q.F. Tao, J. Zhang, L.L. Wang, Y. Yang, H. Liu, Z.G. Wang, Q.G. Xu, J. Fan, L. Liu, S.H. Sun, W.P. Zhou, Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology 63, 499–511 (2016)

    Article  CAS  Google Scholar 

  23. M. Dai, S. Chen, X. Wei, X. Zhu, F. Lan, S. Dai, X. Qin, Diagnosis, prognosis and bioinformatics analysis of lncRNAs in hepatocellular carcinoma. Oncotarget 8, 95799–95809 (2017)

    Article  Google Scholar 

  24. H. Zhang, C. Zhu, Y. Zhao, M. Li, L. Wu, X. Yang, X. Wan, A. Wang, M.Q. Zhang, X. Sang, H. Zhao, Long non-coding RNA expression profiles of hepatitis C virus-related dysplasia and hepatocellular carcinoma. Oncotarget 6, 43770–43778 (2015)

    Article  Google Scholar 

  25. J. Cheng, H.Y. Xie, X. Xu, J. Wu, X. Wei, R. Su, W. Zhang, Z. Lv, S. Zheng, L. Zhou, NDRG1 as a biomarker for metastasis, recurrence and of poor prognosis in hepatocellular carcinoma. Cancer Lett. 310, 35–45 (2011)

    Article  CAS  Google Scholar 

  26. W.J. Lu, M.S. Chua, S.K. So, Suppressing N-Myc downstream regulated gene 1 reactivates senescence signaling and inhibits tumor growth in hepatocellular carcinoma. Carcinogenesis 35, 915–922 (2014)

    Article  CAS  Google Scholar 

  27. Q. Luo, C.Q. Wang, L.Y. Yang, X.M. Gao, H.T. Sun, Y. Zhang, K.L. Zhang, Y. Zhu, Y. Zheng, Y.Y. Sheng, L. Lu, H.L. Jia, W.Q. Yu, J. Liu, Q.Z. Dong, L.X. Qin, FOXQ1/NDRG1 axis exacerbates hepatocellular carcinoma initiation via enhancing crosstalk between fibroblasts and tumor cells. Cancer Lett. 417, 21–34 (2018)

    Article  CAS  Google Scholar 

  28. Y. Liu, D. Wang, Y. Li, S. Yan, H. Dang, H. Yue, J. Ling, F. Chen, Y. Zhao, L. Gou, P. Tang, A. Huang, H. Tang, Long noncoding RNA CCAT2 promotes hepatocellular carcinoma proliferation and metastasis through up-regulation of NDRG1. Exp. Cell Res. 379, 19–29 (2019)

    Article  CAS  Google Scholar 

  29. D.H. Bae, P.J. Jansson, M.L. Huang, Z. Kovacevic, D. Kalinowski, C.S. Lee, S. Sahni, D.R. Richardson, The role of NDRG1 in the pathology and potential treatment of human cancers. J. Clin. Pathol. 66, 911–917 (2013)

    Article  CAS  Google Scholar 

  30. F. Hosoi, H. Izumi, A. Kawahara, Y. Murakami, H. Kinoshita, M. Kage, K. Nishio, K. Kohno, M. Kuwano, M. Ono, N-myc downstream regulated gene 1/Cap43 suppresses tumor growth and angiogenesis of pancreatic cancer through attenuation of inhibitor of kappaB kinase beta expression. Cancer Res. 69, 4983–4991 (2009)

    Article  CAS  Google Scholar 

  31. Y. Murakami, K. Watari, T. Shibata, M. Uba, H. Ureshino, A. Kawahara, H. Abe, H. Izumi, N. Mukaida, M. Kuwano, M. Ono, N-myc downstream-regulated gene 1 promotes tumor inflammatory angiogenesis through JNK activation and autocrine loop of interleukin-1α by human gastric cancer cells. J. Biol. Chem. 288, 25025–25037 (2013)

    Article  CAS  Google Scholar 

  32. Y. Song, L. Cao, N-myc downstream-regulated gene 1: Diverse and complicated functions in human hepatocellular carcinoma (review). Oncol. Lett. 6, 1539–1542 (2013)

    Article  CAS  Google Scholar 

  33. E.U. Jung, J.H. Yoon, Y.J. Lee, J.H. Lee, B.H. Kim, S.J. Yu, S.J. Myung, Y.J. Kim, H.S. Lee, Hypoxia and retinoic acid-inducible NDRG1 expression is responsible for doxorubicin and retinoic acid resistance in hepatocellular carcinoma cells. Cancer Lett. 298, 9–15 (2010)

    Article  CAS  Google Scholar 

  34. Q. Chen, D. Wang, Y. Li, S. Yan, H. Dang, H. Yue, J. Ling, F. Chen, Y. Zhao, L. Gou, P. Tang, A. Huang, H. Tang, LINC00628 suppresses migration and invasion of hepatocellular carcinoma by its conserved region interacting with the promoter of VEGFA. J. Cell. Physiol. 1–12 (2019)

Download references

Funding

This study was supported by a National Science and Technology Major Project of the Ministry of Science and Technology of China [grant number 2018ZX10732202], and a Postgraduate scientific research innovation project of Chongqing, China [grant number CYB18164].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Tang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethics approval and consent to participate

This study was approved by the ethics committee of the Third Hospital of Mianyang, and informed consent was obtained from each patient. Animal studies were approved by the Ethics Committee of Animal Experiments of Chongqing Medical University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 120 kb)

ESM 2

(DOC 27 kb)

ESM 3

(DOC 70 kb)

ESM 4

(DOC 373 kb)

Fig. S1

Transcript location of LINC01419. (a) The LINC01419-coding sequence with the length of 1521 bp (NCBI Accession: NR_122034.1), consisting of exons 1 and 2, is located on chromosome 8 (q21.13). The image is shown by HUGO Gene Nomenclature Committee (HGNC, https://www.genenames.org/). (b) The schematic model of LINC01419 sequence structure. The image is shown by LNCipedia (https://www.lncipedia.org/). (PNG 262 kb)

High resolution image (TIF 1112 kb)

Fig. S2

LINC01419 is mainly localized in the cell cytoplasm. The image is shown by lncLocator (http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/). (PNG 492 kb)

High resolution image (TIF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H., Chen, L., Tang, P. et al. LINC01419 promotes cell proliferation and metastasis in hepatocellular carcinoma by enhancing NDRG1 promoter activity. Cell Oncol. 43, 931–947 (2020). https://doi.org/10.1007/s13402-020-00540-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00540-6

Keywords

Navigation