Skip to main content
Log in

RETRACTED ARTICLE: Human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via down-regulating MYCN

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

This article was retracted on 19 August 2021

A Publisher Correction to this article was published on 03 December 2023

This article has been updated

Abstract

Purpose

Exosomes play important roles in intercellular communication through signaling pathways affecting tumor microenvironment modulation and tumor proliferation, including those in glioblastoma (GBM). As yet, however, limited studies have been conducted on the inhibitory effect of human bone marrow-derived mesenchymal stem cell (hBMSC)-derived exosomes on GBM development. Therefore, we set out to assess the role of hBMSC secreted exosomes, in particular those carrying microRNA-34a (miR-34a), in the development of GBM.

Methods

Microarray-based expression analysis was employed to identify differentially expressed genes and to predict miRNAs regulating MYCN expression. Next, hBMSCs were transfected with a miR-34a mimic or inhibitor after which exosomes were isolated. Proliferation, apoptosis, migration, invasion and temozolomide (TMZ) chemosensitivity of exosome-exposed GBM cells (T-98G, LN229 and A-172) were measured in vitro. The mechanism underlying MYCN regulation was investigated using lentiviral transfections. The in vivo inhibitory effect of exosomal miR-34a was measured in nude mice xenografted with GBM cells through subcutaneous injection of hBMSCs with an upregulated miR34a content.

Results

We found that poorly-expressed miR-34a specifically targeted and negatively regulated the expression of MYCN in GBM cells. In addition we found that miR-34a was delivered to T-98G, LN229 and A-172 GBM cells via hBMSC-derived exosomes. Exogenous overexpression of miR-34a in hBMSC-derived exosomes resulted in inhibition of GBM cell proliferation, invasion, migration and tumorigenesis in vitro and in vivo, while promoting the chemosensitivity of GBM cells to TMZ by silencing MYCN.

Conclusions

From our data we conclude that hBMSC-derived exosomes overexpressing miR-34a may be instrumental for the therapeutic targeting and clinical management of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. I. Vassallo, P. Zinn, M. Lai, P. Rajakannu, M.F. Hamou, M.E. Hegi, WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1. Oncogene 35, 12–21 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. S. Lehrer, Glioblastoma and dementia may share a common cause. Med. Hypotheses 75, 67–68 (2010)

    Article  PubMed  Google Scholar 

  3. L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell. Oncol. 40, 471–482 (2017)

  4. P. Ofek, M. Calderon, F.S. Mehrabadi, A. Krivitsky, S. Ferber, G. Tiram, N. Yerushalmi, S. Kredo-Russo, R. Grossman, Z. Ram, R. Haag, R. Satchi-Fainaro, Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex. Nanomedicine 12, 2201–2214 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D.I. Rosenbloom, S. Zairis, F. Abate, Z. Liu, O. Elliott, Y.J. Shin, J.K. Lee, I.H. Lee, W.Y. Park, M. Eoli, A.J. Blumberg, A. Lasorella, D.H. Nam, G. Finocchiaro, A. Iavarone, R. Rabadan, Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. Matias, J. Balca-Silva, L.G. Dubois, B. Pontes, V.P. Ferrer, L. Rosario, A. do Carmo, J. Echevarria-Lima, A.B. Sarmento-Ribeiro, M.C. Lopes, V. Moura-Neto, Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell. Oncol. 40, 247–261 (2017)

  7. M.K. Nicholas, R.V. Lukas, S. Chmura, B. Yamini, M. Lesniak, P. Pytel, Molecular heterogeneity in glioblastoma: Therapeutic opportunities and challenges. Semin. Oncol. 38, 243–253 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. N. Hata, N. Shinojima, J. Gumin, R. Yong, F. Marini, M. Andreeff, F.F. Lang, Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery 66, 144–156; discussion 156-147 (2010)

    Article  PubMed  Google Scholar 

  9. T. Birnbaum, J. Hildebrandt, G. Nuebling, P. Sostak, A. Straube, Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J. Neuro-Oncol. 105, 57–65 (2011)

    Article  CAS  Google Scholar 

  10. L. Chen, F.B. Lu, D.Z. Chen, J.L. Wu, E.D. Hu, L.M. Xu, M.H. Zheng, H. Li, Y. Huang, X.Y. Jin, Y.W. Gong, Z. Lin, X.D. Wang, Y.P. Chen, BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol. Immunol. 93, 38–46 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. M. Ono, N. Kosaka, N. Tominaga, Y. Yoshioka, F. Takeshita, R.U. Takahashi, M. Yoshida, H. Tsuda, K. Tamura, T. Ochiya, Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63 (2014)

    Article  PubMed  Google Scholar 

  12. V. Sundararajan, F.H. Sarkar, T.S. Ramasamy, The versatile role of exosomes in cancer progression: Diagnostic and therapeutic implications. Cell. Oncol.  41, 223–252 (2018)

  13. F. Lan, Q. Qing, Q. Pan, M. Hu, H. Yu, X. Yue, Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell. Oncol. 41, 25–33 (2018)

  14. P. Sumazin, X. Yang, H.S. Chiu, W.J. Chung, A. Iyer, D. Llobet-Navas, P. Rajbhandari, M. Bansal, P. Guarnieri, J. Silva, A. Califano, An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)

  16. F. Guessous, Y. Zhang, A. Kofman, A. Catania, Y. Li, D. Schiff, B. Purow, R. Abounader, microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9, 1031–1036 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. W.B. Li, M.W. Ma, L.J. Dong, F. Wang, L.X. Chen, X.R. Li, MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme. Cancer Biol. Ther. 12, 477–483 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. L. Bjerke, A. Mackay, M. Nandhabalan, A. Burford, A. Jury, S. Popov, D.A. Bax, D. Carvalho, K.R. Taylor, M. Vinci, I. Bajrami, I.M. McGonnell, C.J. Lord, R.M. Reis, D. Hargrave, A. Ashworth, P. Workman, C. Jones, Histone H3.3. Mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 3, 512–519 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K. Campbell, J.M. Gastier-Foster, M. Mann, A.H. Naranjo, C. Van Ryn, R. Bagatell, K.K. Matthay, W.B. London, M.S. Irwin, H. Shimada, M.M. Granger, M.D. Hogarty, J.R. Park, S.G. DuBois, Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children's oncology group. Cancer 123, 4224–4235 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. X.Y. He, Z.L. Tan, Q. Mou, F.J. Liu, S. Liu, C.W. Yu, J. Zhu, L.Y. Lv, J. Zhang, S. Wang, L.M. Bao, B. Peng, H. Zhao, L. Zou, microRNA-221 enhances MYCN via targeting nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma. Clin. Cancer Res. 23, 2905–2918 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. S.S. Rathod, S.B. Rani, M. Khan, D. Muzumdar, A. Shiras, Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio. 4, 485–495 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Sarkar, S. Jun, S. Rellick, D.D. Quintana, J.Z. Cavendish, J.W. Simpkins, Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res. 1646, 139–151 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Shatsberg, X. Zhang, P. Ofek, S. Malhotra, A. Krivitsky, A. Scomparin, G. Tiram, M. Calderon, R. Haag, R. Satchi-Fainaro, Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. J. Control. Release 239, 159–168 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. E.A. Toraih, N.M. Aly, H.Y. Abdallah, S.A. Al-Qahtani, A.A. Shaalan, M.H. Hussein, M.S. Fawzy, MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol. 39, 1010428317726842 (2017)

    Article  PubMed  Google Scholar 

  25. J.S. Wei, Y.K. Song, S. Durinck, Q.R. Chen, A.T. Cheuk, P. Tsang, Q. Zhang, C.J. Thiele, A. Slack, J. Shohet, J. Khan, The MYCN oncogene is a direct target of miR-34a. Oncogene 27, 5204–5213 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T. Lv, K. Song, L. Zhang, W. Li, Y. Chen, Y. Diao, Q. Yao, P. Liu, MiRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1. Biochem. Cell Biol. 96, 663–671 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. M. Xu, D. Li, C. Yang, J.S. Ji, MicroRNA-34a inhibition of the TLR signaling pathway via CXCL10 suppresses breast Cancer cell invasion and migration. Cell. Physiol. Biochem. 46, 1286–1304 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. A. Savina, M. Furlan, M. Vidal, M.I. Colombo, Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278, 20083–20090 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brugger, M. Simons, Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. E. Lages, A. Guttin, M. El Atifi, C. Ramus, H. Ipas, I. Dupre, D. Rolland, C. Salon, C. Godfraind, F. deFraipont, M. Dhobb, L. Pelletier, D. Wion, E. Gay, F. Berger, J.P. Issartel, MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One 6, e20600 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A.T. Bayrac, K. Sefah, P. Parekh, C. Bayrac, B. Gulbakan, H.A. Oktem, W. Tan, In vitro selection of DNA aptamers to glioblastoma Multiforme. ACS Chem. Neurosci. 2, 175–181 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C.S. Niu, Y. Yang, C.D. Cheng, MiR-134 regulates the proliferation and invasion of glioblastoma cells by reducing Nanog expression. Int. J. Oncol. 42, 1533–1540 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Y. Chen, Y.H. Tsai, S.H. Tseng, Inhibition of cyclin-dependent kinase 1-induced cell death in neuroblastoma cells through the microRNA-34a-MYCN-survivin pathway. Surgery 153, 4–16 (2013)

    Article  PubMed  Google Scholar 

  34. T. Thor, A. Kunkele, K.W. Pajtler, A.K. Wefers, H. Stephan, P. Mestdagh, L. Heukamp, W. Hartmann, J. Vandesompele, N. Sadowski, L. Becker, L. Garrett, S.M. Holter, M. Horsch, J. Calzada-Wack, T. Klein-Rodewald, I. Racz, A. Zimmer, J. Beckers, F. Neff, T. Klopstock, P. De Antonellis, M. Zollo, W. Wurst, H. Fuchs, V. Gailus-Durner, U. Schuller, M.H. de Angelis, A. Eggert, A. Schramm, J.H. Schulte, MiR-34a deficiency accelerates medulloblastoma formation in vivo. Int. J. Cancer 136, 2293–2303 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. J.K. Yang, J. Song, H.R. Huo, Y.L. Zhao, G.Y. Zhang, Z.M. Zhao, G.Z. Sun, B.H. Jiao, DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme. Ther. Adv. Med. Oncol. 9, 741–754 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Wang, A. Hendrix, S. Hernot, M. Lemaire, E. De Bruyne, E. Van Valckenborgh, T. Lahoutte, O. De Wever, K. Vanderkerken, E. Menu, Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood 124, 555–566 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. S.R. Baglio, K. Rooijers, D. Koppers-Lalic, F.J. Verweij, M. Perez Lanzon, N. Zini, B. Naaijkens, F. Perut, H.W. Niessen, N. Baldini, D.M. Pegtel, Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 6, 127 (2015)

  38. T. Umezu, S. Imanishi, K. Azuma, C. Kobayashi, S. Yoshizawa, K. Ohyashiki, J.H. Ohyashiki, Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Adv. 1, 812–823 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J.K. Yang, J.P. Yang, J. Tong, S.Y. Jing, B. Fan, F. Wang, G.Z. Sun, B.H. Jiao, Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. J. Neuro-Oncol. 131, 255–265 (2017)

    Article  CAS  Google Scholar 

  40. D. Yin, S. Ogawa, N. Kawamata, A. Leiter, M. Ham, D. Li, N.B. Doan, J.W. Said, K.L. Black, H. Phillip Koeffler, miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene 32, 1155–1163 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. J.M. Shohet, R. Ghosh, C. Coarfa, A. Ludwig, A.L. Benham, Z. Chen, D.M. Patterson, E. Barbieri, P. Mestdagh, D.N. Sikorski, A. Milosavljevic, E.S. Kim, P.H. Gunaratne, A genome-wide search for promoters that respond to increased MYCN reveals both new oncogenic and tumor suppressor microRNAs associated with aggressive neuroblastoma. Cancer Res. 71, 3841–3851 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. A. Nadkarni, M. Shrivastav, A.C. Mladek, P.M. Schwingler, P.T. Grogan, J. Chen, J.N. Sarkaria, ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J. Neuro-Oncol. 110, 349–357 (2012)

    Article  CAS  Google Scholar 

  43. N. Kondo, A. Takahashi, E. Mori, T. Noda, M.Z. Zdzienicka, L.H. Thompson, T. Helleday, M. Suzuki, Y. Kinashi, S. Masunaga, K. Ono, M. Hasegawa, T. Ohnishi, FANCD1/BRCA2 plays predominant role in the repair of DNA damage induced by ACNU or TMZ. PLoS One 6, e19659 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Xu, H. Huang, R. Peng, X. Ding, B. Jiang, X. Yuan, J. Xi, MicroRNA-30a increases the chemosensitivity of U251 glioblastoma cells to temozolomide by directly targeting beclin 1 and inhibiting autophagy. Exp. Ther. Med. 15, 4798–4804 (2018)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank our researchers for their hard work and the reviewers for their valuable advice.

Author information

Authors and Affiliations

Authors

Contributions

Bin Wang, Zhong-Hua Wu and Ping-Yang Lou designed the study. Chang Chai and Shuang-Yin Han collated the data, designed and developed the database, carried out data analyses and produced the initial draft of the manuscript. Jian-Fang Ning and Ming Li contributed to drafting the manuscript. All authors have contributed to the revision and approved the final submitted manuscript.

Corresponding author

Correspondence to Ming Li.

Ethics declarations

Conflict of interest

None declared.

Ethical approval and informed consent

This study was carried out and approved by the Institutional Review Board and the Institutional Animal Care and Use Committee of Henan Province People’s Hospital, Zhengzhou University. All patients signed informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s13402-021-00627-8

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wu, ZH., Lou, PY. et al. RETRACTED ARTICLE: Human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via down-regulating MYCN. Cell Oncol. 42, 783–799 (2019). https://doi.org/10.1007/s13402-019-00461-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00461-z

Keywords

Navigation