Skip to main content

Advertisement

Log in

Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

It has been reported that stromal cell features may affect the clinical outcome of breast cancer patients. Cancer associated fibroblasts (CAFs) represent one of the most abundant cell types within the breast cancer stroma. Here, we aimed to explore the influence of CAFs on breast cancer gene expression, as well as on invasion and angiogenesis.

Methods

qRT-PCR was used to evaluate the expression of several cancer progression related genes (S100A4, TGFβ, FGF2, FGF7, PDGFA, PDGFB, VEGFA, IL-6, IL-8, uPA, MMP2, MMP9, MMP11 and TIMP1) in the human breast cancer-derived cell lines MCF-7 and MDA-MB-231, before and after co-culture with CAFs. Stromal mononuclear inflammatory cell (MIC) MMP11 expression was used to stratify primary tumors. In addition, we assessed the in vitro effects of CAFs on both MDA-MB-231 breast cancer cell invasion and endothelial cell (HUVEC) tube formation.

Results

We found that the expression levels of most of the genes tested were significantly increased in both breast cancer-derived cell lines after co-culture with CAFs from either MMP11+ or MMP11- MIC tumors. IL-6 and IL-8 showed an increased expression in both cancer-derived cell lines after co-culture with CAFs from MMP11+ MIC tumors. We also found that the invasive and angiogenic capacities of, respectively, MDA-MB-231 and HUVEC cells were increased after co-culture with CAFs, especially those from MMP11+ MIC tumors.

Conclusions

Our data indicate that tumor-derived CAFs can induce up-regulation of genes involved in breast cancer progression. Our data additionally indicate that CAFs, especially those derived from MMP11+ MIC tumors, can promote breast cancer cell invasion and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Marsh, K. Pietras, S.S. McAllister, Fibroblasts as architects of cancer pathogenesis. Biochim. Biophys. Acta 1832, 1070–1078 (2013)

    Article  PubMed  CAS  Google Scholar 

  2. I. Kogan-Sakin, M. Cohen, N. Paland, S. Madar, H. Solomon, A. Molchadsky, R. Brosh, Y. Buganim, N. Goldfinger, H. Klocker, J.A. Schalken, V. Rotter, Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis 30, 698–705 (2009)

    Article  PubMed  CAS  Google Scholar 

  3. M.P. Protti, L. De Monte, Cross-talk within the tumor microenvironment mediates Th2-type inflammation in pancreatic cancer. Oncoimmunology. 1, 89–91 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. Koontongkaew, The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J. Cancer 4, 66–83 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. S. Madar, I. Goldstein, V. Rotter, ‘Cancer associated fibroblasts’--more than meets the eye. Trends Mol. Med. 19, 447–453 (2013)

    Article  PubMed  CAS  Google Scholar 

  6. N. Erez, M. Truitt, P. Olson, S.T. Arron, D. Hanahan, Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17, 135–147 (2010)

    Article  PubMed  CAS  Google Scholar 

  7. P.S. Soon, E. Kim, C.K. Pon, A.J. Gill, K. Moore, A.J. Spillane, D.E. Benn, R.C. Baxter, Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr. Relat. Cancer 20, 1–12 (2013)

    Article  PubMed  CAS  Google Scholar 

  8. R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. M. Allen, J. Louise Jones, Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 223, 162–176 (2011)

    PubMed  CAS  Google Scholar 

  10. L. Gonzalez, N. Eiro, B. Fernandez-Garcia, L.O. Gonzalez, F. Dominguez, F.J. Vizoso, Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Mol. Carcinog. 55, 1489–1502 (2016)

  11. M.M. Koczorowska, C. Friedemann, K. Geiger, M. Follo, M.L. Biniossek, O. Schilling, Differential effect of TGFbeta on the proteome of cancer associated fibroblasts and cancer epithelial cells in a co-culture approach - a short report. Cell. Oncol. 40, 639–650 (2017)

    Article  CAS  Google Scholar 

  12. N. Eiro, B. Fernandez-Garcia, L.O. Gonzalez, F.J. Vizoso, Cytokines related to MMP-11 expression by inflammatory cells and breast cancer metastasis. Oncoimmunology. 2, e24010 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  13. L.O. Gonzalez, I. Pidal, S. Junquera, M.D. Corte, J. Vazquez, J.C. Rodriguez, M.L. Lamelas, A.M. Merino, J.L. Garcia-Muniz, F.J. Vizoso, Overexpression of matrix metalloproteinases and their inhibitors in mononuclear inflammatory cells in breast cancer correlates with metastasis-relapse. Br. J. Cancer 97, 957–963 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. N. Eiro, B. Fernandez-Garcia, J. Vazquez, J.M. Del Casar, L.O. Gonzalez, F.J. Vizoso, A phenotype from tumor stroma based on the expression of metalloproteases and their inhibitors, associated with prognosis in breast cancer. Oncoimmunology 4, e992222 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. L.O. Gonzalez, S. Gonzalez-Reyes, L. Marin, L. Gonzalez, J.M. Gonzalez, M.L. Lamelas, A.M. Merino, E. Rodriguez, I. Pidal, J.M. del Casar, A. Andicoechea, F. Vizoso, Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumour stromal mononuclear inflammatory cells and those at the invasive front of breast carcinomas. Histopathology 57, 862–876 (2010)

    Article  PubMed  Google Scholar 

  16. B. Fernandez-Garcia, N. Eiro, M.A. Miranda, S. Cid, L.O. Gonzalez, F. Dominguez, F.J. Vizoso, Prognostic significance of inflammatory factors expression by stroma from breast carcinomas. Carcinogenesis 37, 768–776 (2016)

    Article  PubMed  CAS  Google Scholar 

  17. E. Zudaire, L. Gambardella, C. Kurcz, S. Vermeren, A computational tool for quantitative analysis of vascular networks. PLoS One 6, e27385 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. M.A. Taylor, Y.H. Lee, W.P. Schiemann, Role of TGF-beta and the tumor microenvironment during mammary tumorigenesis. Gene Expr. 15, 117–132 (2011)

    Article  PubMed  CAS  Google Scholar 

  19. B. Bierie, H.L. Moses, Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6, 506–520 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. A. Orimo, P.B. Gupta, D.C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem, V.J. Carey, A.L. Richardson, R.A. Weinberg, Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. A.W. Studebaker, G. Storci, J.L. Werbeck, P. Sansone, A.K. Sasser, S. Tavolari, T. Huang, M.W. Chan, F.C. Marini, T.J. Rosol, M. Bonafe, B.M. Hall, Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res. 68, 9087–9095 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. J.M. Wang, X. Deng, W. Gong, S. Su, Chemokines and their role in tumor growth and metastasis. J. Immunol. Methods 220, 1–17 (1998)

    Article  PubMed  CAS  Google Scholar 

  23. D.E. Hu, Y. Hori, T.P. Fan, Interleukin-8 stimulates angiogenesis in rats. Inflammation 17, 135–143 (1993)

    Article  PubMed  CAS  Google Scholar 

  24. T. Bachelot, I. Ray-Coquard, C. Menetrier-Caux, M. Rastkha, A. Duc, J.Y. Blay, Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer 88, 1721–1726 (2003)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. R. Salgado, S. Junius, I. Benoy, P. Van Dam, P. Vermeulen, E. Van Marck, P. Huget, L.Y. Dirix, Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer 103, 642–646 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. I.H. Benoy, R. Salgado, P. Van Dam, K. Geboers, E. Van Marck, S. Scharpe, P.B. Vermeulen, L.Y. Dirix, Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin. Cancer Res. 10, 7157–7162 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. Y. Cao, Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol. Med. 19, 460–473 (2013)

    Article  PubMed  CAS  Google Scholar 

  28. M. Jechlinger, A. Sommer, R. Moriggl, P. Seither, N. Kraut, P. Capodiecci, M. Donovan, C. Cordon-Cardo, H. Beug, S. Grunert, Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest. 116, 1561–1570 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. M.M. Mueller, N.E. Fusenig, Friends or foes - bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839–849 (2004)

    Article  PubMed  CAS  Google Scholar 

  30. D. Engelmann, D. Mayoli-Nussle, C. Mayrhofer, K. Furst, V. Alla, A. Stoll, A. Spitschak, K. Abshagen, B. Vollmar, S. Ran, B.M. Putzer, E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B. J. Mol. Cell Biol. 5, 391–403 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. P. Manders, L.V. Beex, V.C. Tjan-Heijnen, J. Geurts-Moespot, T.H. Van Tienoven, J.A. Foekens, C.G. Sweep, The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br. J. Cancer 87, 772–778 (2002)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. H. Bando, H.A. Weich, M. Brokelmann, S. Horiguchi, N. Funata, T. Ogawa, M. Toi, Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br. J. Cancer 92, 553–561 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. S. Ghosh, C.A. Sullivan, M.P. Zerkowski, A.M. Molinaro, D.L. Rimm, R.L. Camp, G.G. Chung, High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum. Pathol. 39, 1835–1843 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. S.O. Wurtz, A.S. Schrohl, N.M. Sorensen, U. Lademann, I.J. Christensen, H. Mouridsen, N. Brunner, Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocr. Relat. Cancer 12, 215–227 (2005)

    Article  PubMed  CAS  Google Scholar 

  35. A. Neri, T. Megha, F. Bettarini, D. Tacchini, M.G. Mastrogiulio, D. Marrelli, E. Pinto, P. Tosi, Is tissue inhibitor of metalloproteinase-1 a new prognosticator for breast cancer? An analysis of 266 cases. Hum. Pathol. 43, 1184–1191 (2012)

    Article  PubMed  CAS  Google Scholar 

  36. A. Dechaphunkul, M. Phukaoloun, K. Kanjanapradit, K. Graham, S. Ghosh, C. Santos, J.R. Mackey, Prognostic significance of tissue inhibitor of metalloproteinase-1 in breast cancer. Int. J. Breast Cancer 2012, 290854 (2012)

  37. N. Eiro, L. Gonzalez, L.O. Gonzalez, B. Fernandez-Garcia, M.L. Lamelas, L. Marin, S. Gonzalez-Reyes, J.M. del Casar, F.J. Vizoso, Relationship between the inflammatory molecular profile of breast carcinomas and distant metastasis development. PLoS One 7, e49047 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. N. Eiro, I. Pidal, B. Fernandez-Garcia, S. Junquera, M.L. Lamelas, J.M. del Casar, L.O. Gonzalez, A. Lopez-Muniz, F.J. Vizoso, Impact of CD68/(CD3+CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS One 7, e52796 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Y. Lin, R. Huang, L. Chen, S. Li, Q. Shi, C. Jordan, R.P. Huang, Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int. J. Cancer 109, 507–515 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. R.K. Jain, Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to F. V from the Instituto de Salud Carlos III (PI13/02745) and from the Consejería de Economía y Empleo del Principado de Asturias (GRUPIN14-116), and to R.P-F. from the Ministerio de Economia y Competividad (SAF2015-69221-R). A.M-O. is a predoctoral fellow from the Ministerio de Educación (FPU14/00548). S.C. was recipient of a predoctoral fellowship financed by the Gobierno del Principado de Asturias “Severo Ochoa” PhD Program (BP14-128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noemi Eiro or Francisco J. Vizoso.

Ethics declarations

The study adheres to national regulations and was approved by our Institution’s Ethics and Investigation Committee.

Conflict of interest

The authors have no conflicts of interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiro, N., González, L., Martínez-Ordoñez, A. et al. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol. 41, 369–378 (2018). https://doi.org/10.1007/s13402-018-0371-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0371-y

Keywords

Navigation