Skip to main content

Advertisement

Log in

The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

The transition of cells from the epithelial to the mesenchymal state (EMT) plays an important role in tumor progression. EMT allows cells to acquire mobility, stem-like behavior and resistance to apoptosis and drug treatment. These features turn EMT into a central process in tumor biology. Ion channels are attractive targets for the treatment of cancer since they play critical roles in controlling a wide range of physiological processes that are frequently deregulated in cancer. Here, we investigated the role of ether-a-go-go-related 1 (hERG1) ion channels in the EMT of colorectal cancer cells.

Methods

We studied the epithelial-mesenchymal profile of different colorectal cancer-derived cell lines and the expression of hERG1 potassium channels in these cell lines using real-time PCR. Next, we knocked down hERG1 expression in HCT116 cells using lentivirus mediated RNA interference and characterized the hERG1 silenced cells in vitro and in vivo. Finally, we investigated the capacity of riluzole, an ion channel-modulating drug used in humans to treat amyotrophic lateral sclerosis, to reduce the resistance of the respective colorectal cancer cells to the chemotherapeutic drug cisplatin.

Results

We found that of the colorectal cancer-derived cell lines tested, HCT116 showed the highest mesenchymal profile and a high hERG1 expression. Subsequent hERG1 expression knockdown induced a change in cell morphology, which was accompanied by a reduction in the proliferative and tumorigenic capacities of the cells. Notably, we found that hERG1expression knockdown elicited a reversion of the EMT profile in HCT116 cells with a reacquisition of the epithelial-like profile. We also found that riluzole increased the sensitivity of HCT116 cisplatin-resistant cells to cisplatin.

Conclusions

Our data indicate that hERG1 plays a role in the EMT of colorectal cancer cells and that its knockdown reduces the proliferative and tumorigenic capacities of these cells. In addition, we conclude that riluzole may be used in combination with cisplatin to reduce chemo-resistance in colorectal cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Guinney, R. Dienstmann, X. Wang, A. de Reynies, A. Schlicker, C. Soneson, L. Marisa, P. Roepman, G. Nyamundanda, P. Angelino, B.M. Bot, J.S. Morris, I.M. Simon, S. Gerster, E. Fessler, E.M.F. De Sousa, E. Missiaglia, H. Ramay, D. Barras, K. Homicsko, D. Maru, G.C. Manyam, B. Broom, V. Boige, B. Perez-Villamil, T. Laderas, R. Salazar, J.W. Gray, D. Hanahan, J. Tabernero, R. Bernards, S.H. Friend, P. Laurent-Puig, J.P. Medema, A. Sadanandam, L. Wessels, M. Delorenzi, S. Kopetz, L. Vermeulen, S. Tejpar, The consensus molecular subtypes of colorectal cancer. Nat Med 21, 1350–1356 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.M. Hahn, R.M. de Voer, N. Hoogerbrugge, M.J. Ligtenberg, R.P. Kuiper, A.G. van Kessel, The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery. Cell Oncol 39, 491–510 (2016)

    Article  CAS  Google Scholar 

  3. A. Loboda, M.V. Nebozhyn, J.W. Watters, C.A. Buser, P.M. Shaw, P.S. Huang, L. Van't Veer, R.A. Tollenaar, D.B. Jackson, D. Agrawal, H. Dai, T.J. Yeatman, EMT is the dominant program in human colon cancer. BMC Med Genet 4, 9 (2011)

    Google Scholar 

  4. R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420–1428 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Sathyanarayanan, K.S. Chandrasekaran, D. Karunagaran, microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Cell Oncol 40, 119–131 (2017)

    Article  CAS  Google Scholar 

  6. S. Bugide, V.K. Gonugunta, V. Penugurti, V.L. Malisetty, R.K. Vadlamudi, B. Manavathi, HPIP promotes epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer cells through PI3K/AKT pathway activation. Cell Oncol 40, 133–144 (2017)

  7. J.P. Thiery, J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131–142 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. H. Hugo, M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams, E.W. Thompson, Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 213, 374–383 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. B. Baum, J. Settleman, M.P. Quinlan, Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19, 294–308 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. J. Yang, R.A. Weinberg, Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell 14, 818–829 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. K. Polyak, R.A. Weinberg, Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer 9, 265–273 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. S. Corallino, M.G. Malabarba, M. Zobel, P.P. Di Fiore, G. Scita, Epithelial-to-mesenchymal plasticity harnesses endocytic circuitries. Front Oncol 5, 45 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  13. M. Zeisberg, E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119, 1429–1437 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.H. Taube, J.I. Herschkowitz, K. Komurov, A.Y. Zhou, S. Gupta, J. Yang, K. Hartwell, T.T. Onder, P.B. Gupta, K.W. Evans, B.G. Hollier, P.T. Ram, E.S. Lander, J.M. Rosen, R.A. Weinberg, S.A. Mani, Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 107, 15449–15454 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Kunzelmann, Ion channels and cancer. J Membr Biol 205, 159–173 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. J.R. Schwarz, C.K. Bauer, Functions of erg K+ channels in excitable cells. J Cell Mol Med 8, 22–30 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. L.A. Pardo, D. del Camino, A. Sanchez, F. Alves, A. Bruggemann, S. Beckh, W. Stuhmer, Oncogenic potential of EAG K(+) channels. EMBO J 18, 5540–5547 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. B. Hemmerlein, R.M. Weseloh, F. Mello de Queiroz, H. Knotgen, A. Sanchez, M.E. Rubio, S. Martin, T. Schliephacke, M. Jenke, R. Heinz Joachim, W. Stuhmer, L.A. Pardo, Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 5, 41 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  19. M. Spitzner, J. Ousingsawat, K. Scheidt, K. Kunzelmann, R. Schreiber, Voltage-gated K+ channels support proliferation of colonic carcinoma cells. FASEB J 21, 35–44 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. A. Litan, S.A. Langhans, Cancer as a channelopathy: Ion channels and pumps in tumor development and progression. Front Cell Neurosci 9, 86 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. V.R. Rao, M. Perez-Neut, S. Kaja, S. Gentile, Voltage-gated ion channels in cancer cell proliferation. Cancers 7, 849–875 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  22. S.M. Huber, G.S. Braun, S. Segerer, R.W. Veh, M.F. Horster, Metanephrogenic mesenchyme-to-epithelium transition induces profound expression changes of ion channels. Am J Physiol Renal Physiol 279, F65–F76 (2000)

    CAS  PubMed  Google Scholar 

  23. J. Hu, K. Qin, Y. Zhang, J. Gong, N. Li, D. Lv, R. Xiang, X. Tan, Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun 411, 786–791 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. F.M. Davis, A.A. Peters, D.M. Grice, P.J. Cabot, M.O. Parat, S.J. Roberts-Thomson, G.R. Monteith, Non-stimulated, agonist-stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS One 7, e36923 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. I. Restrepo-Angulo, C. Sanchez-Torres, J. Camacho, Human EAG1 potassium channels in the epithelial-to-mesenchymal transition in lung cancer cells. Anticancer Res 31, 1265–1270 (2011)

    CAS  PubMed  Google Scholar 

  26. A. Schwab, C. Stock, Ion channels and transporters in tumour cell migration and invasion. Philos Trans R Soc Lond Ser B Biol Sci 369, 20130102 (2014)

    Article  Google Scholar 

  27. O. Crociani, F. Zanieri, S. Pillozzi, E. Lastraioli, M. Stefanini, A. Fiore, A. Fortunato, M. D'Amico, M. Masselli, E. De Lorenzo, L. Gasparoli, M. Chiu, O. Bussolati, A. Becchetti, A. Arcangeli, hERG1 channels modulate integrin signaling to trigger angiogenesis and tumor progression in colorectal cancer. Sci Rep 3, 3308 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  28. B. Hille, Ion channels of excitable membranes, 3rd edn. (Sinauer, Sunderland, Mass, 2001)

    Google Scholar 

  29. N.M. Hogan, R.M. Dwyer, M.R. Joyce, M.J. Kerin, Mesenchymal stem cells in the colorectal tumor microenvironment: Recent progress and implications. Int J Cancer 131, 1–7 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. J. Lam, N. Coleman, A.L. Garing, H. Wulff, The therapeutic potential of small-conductance KCa2 channels in neurodegenerative and psychiatric diseases. Expert Opin Ther Targets 17, 1203–1220 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Sankaranarayanan, G. Raman, C. Busch, T. Schultz, P.I. Zimin, J. Hoyer, R. Kohler, H. Wulff, Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 75, 281–295 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. E. Lastraioli, L. Guasti, O. Crociani, S. Polvani, G. Hofmann, H. Witchel, L. Bencini, M. Calistri, L. Messerini, M. Scatizzi, R. Moretti, E. Wanke, M. Olivotto, G. Mugnai, A. Arcangeli, herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64, 606–611 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. R. Schonherr, B. Rosati, S. Hehl, V.G. Rao, A. Arcangeli, M. Olivotto, S.H. Heinemann, E. Wanke, Functional role of the slow activation property of ERG K+ channels. Eur J Neurosci 11, 753–760 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Fortunato, L. Gasparoli, S. Falsini, L. Boni, A. Arcangeli, An analytical method for the quantification of hERG1 channel gene expression in human colorectal cancer. Diagn Mol Pathol 22, 215–221 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. T.C. Chou, P. Talalay, Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58, 621–681 (2006) Erratum in: Pharmacol. Rev. 59, 124 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. E.L. Lee, Y. Hasegawa, T. Shimizu, Y. Okada, IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. Am J Physiol Cell Physiol 294, C1398–C1406 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39, 397–410 (2016)

    Article  CAS  Google Scholar 

  39. L. Guasti, O. Crociani, E. Redaelli, S. Pillozzi, S. Polvani, M. Masselli, T. Mello, A. Galli, A. Amedei, R.S. Wymore, E. Wanke, A. Arcangeli, Identification of a posttranslational mechanism for the regulation of hERG1 K+ channel expression and hERG1 current density in tumor cells. Mol Cell Biol 28, 5043–5060 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. X. Huang, L.Y. Jan, Targeting potassium channels in cancer. J Cell Biol 206, 151–162 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Dasari, P.B. Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 740, 364–378 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. J.W. Albers, V. Chaudhry, G. Cavaletti and R.C. Donehower, Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev, CD005228 (2014)

  43. J. Killestein, N.F. Kalkers, C.H. Polman, Glutamate inhibition in MS: The neuroprotective properties of riluzole. J Neurol Sci 233, 113–115 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Annarosa Arcangeli, Massimo D’Amico, Elena Morelli, Serena Pillozzi, Antonella Mannini, Olivia Crociani, Sara Falsini, Luca Gasparoli and Ivo Noci for advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Fortunato.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors and it was partially supported by the University of Florence, Italy.

Electronic supplementary material

Figure 1S

hERG1 isoforms. Protein coding isoforms of the hERG1 gene. Arrows indicate the shRNAs complementary target sequences. Box: exon; grey box: protein coding sequence; box not filled: untranslated sequence; line between boxes: intron. (PDF 17.6 kb)

Figure 2S

Western blot analysis. Western blot image of total protein analysis of different samples of control (pLKO.1–1, 2) and silenced cells (sh7–1, 2, 3, 4). (PDF 171 kb)

Figure 3S

KCa3.1 gene expression in HCT116, HCT8, HT29 and H630 colorectal cancer cells (PDF 79.1 kb)

Table 1S

Sequences of primers. Sequences of primers (5′-3′). (XLSX 10.6 kb)

Table 2S

Sequences of shRNA. Sequences of shRNA constructs capable of post-transcriptional silence the hERG1 gene. Each shRNA construct (commercially distributed by Open Biosystems) included a hairpin of 21 base pair sense and antisense stem and a 6 base pair loop. (XLSX 10.2 kb)

Table 3S

riluzole has a synergic effect in combination with cisplatin on HCT116 cells. Cisplatin and riluzole have a synergic, additive or antagonistic effect when used in combination, determined by cell viability assay (WST-1) and Calcusyn data analysis software. HCT116 cells were treated with a mixture of cisplatin and riluzole at different concentration but a constant a ratio of the two drugs with a 2-fold serial dilution of their IC50 (1/2, 1/4, 1/8, 1/16, 1/32, 1/64). The concentration of cisplatin and riluzole drugs and the combination index are reported in the Table. CI = 1, indicates an additive effect, CI < 1, indicates a synergistic effect and CI > 1, indicates an antagonistic effect. (DOCX 32.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunato, A. The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells. Cell Oncol. 40, 367–378 (2017). https://doi.org/10.1007/s13402-017-0328-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0328-6

Keywords

Navigation