Skip to main content
Log in

Nitric oxide increases the migratory activity of non-small cell lung cancer cells via AKT-mediated integrin αv and β1 upregulation

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Previously, nitric oxide (NO) has been found to affect the metastatic behavior of various types of cancer. In addition, it has been found that alterations in integrin expression may have profound effects on cancer cell survival and migration. Here, we aimed at assessing the effects of non-toxic concentrations of NO on human non-small cell lung cancer (NSCLC) cells, including the expression of integrins and the migration of these cells.

Methods

The cytotoxic and proliferative effects of NO on human NSCLC-derived H460, H292 and H23 cells were tested by MTT assay. The migration capacities of these cells was evaluated by wound healing and transwell migration assays. The expression of integrins and migration-associated proteins was determined by Western blot analyses.

Results

We found that NO treatment caused a significant increase in the expression of integrin αv and β1 in all three NSCLC-derived cell lines tested. Known migration-associated proteins acting downstream of these integrins, including focal adhesion kinase (FAK), active RhoA (Rho-GTP) and active cell division control 42 (Cdc42-GTP), were found to be significantly activated in response to NO. In addition, we found that NO-treated cells showed an increased motility and that this motility was associated with a significant increase in the number of filopodia per cell. We also found that NO-treated cells exhibited increased active protein kinase G (PKG), protein kinase B (AKT) and FAK expression levels. Using a pharmacological approach, we found that the integrin-modulating effect of NO is most likely brought about by a PKG/AKT-dependent mechanism, since the observed changes in integrin expression were abolished by AKT inhibitors, but not by FAK inhibitors.

Conclusion

Our data suggest a novel role of NO in the regulation of integrin expression and, concomitantly, the migratory capacity of NSCLC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Khosravi, S. Shahrabi, M. Shahjahani, N. Saki, The bone marrow metastasis niche in retinoblastoma. Cell. Oncol. 38, 253–263 (2015)

    Article  CAS  Google Scholar 

  2. J. A. Joyce, J. W. Pollard, Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. S. Wan, Y. Liu, Y. Weng, W. Wang, W. Ren, C. Fei, Y. Chen, Z. Zhang, T. Wang, J. Wang, BMP9 regulates cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells. Cell. Oncol. 37, 363–375 (2014)

    Article  CAS  Google Scholar 

  4. A. Koren, E. Sodja, M. Rijavec, M. Jez, V. Kovac, P. Korosec, T. Cufer, Prognostic value of cytokeratin-7 mRNA expression in peripheral whole blood of advanced lung adenocarcinoma patients. Cell. Oncol. 38, 387–395 (2015)

    Article  CAS  Google Scholar 

  5. E. Prodromaki, A. Korpetinou, E. Giannopoulou, E. Vlotinou, μ. Chatziathanasiadou, N. Papachristou, C. Scopa, H. Papadaki, H. Kalofonos, D. Papachristou, expression of the microRNA regulators Drosha, dicer and Ago2 in non-small cell lung carcinomas. Cell. Oncol. 38, 307–317 (2015)

    Article  CAS  Google Scholar 

  6. C. Zeng, W. Fan, X. Zhang, RRM1 expression is associated with the outcome of gemcitabine-based treatment of non-small cell lung cancer patients–a short report. Cell. Oncol. 38, 319–325 (2015)

    Article  CAS  Google Scholar 

  7. Z. B. Cincin, M. Unlu, B. Kiran, E. S. Bireller, Y. Baran, B. Cakmakoglu, Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell. Oncol. 38, 195–204 (2015)

    Article  Google Scholar 

  8. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics. CA Cancer J. Clin. 65, 5–29 (2015)

    Article  PubMed  Google Scholar 

  9. L. C. Jadeski, K. O. Hum, C. Chakraborty, P. K. Lala, Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int. J. Cancer 86, 30–39 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. D. Fukumura, S. Kashiwagi, R. K. Jain, The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6, 521–534 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. C. Liu, C. Wang, T. Chen, H. Lin, C. Yu, H. Kuo, Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer. Brit. J. Cancer 78, 534 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P. Chanvorachote, U. Nimmannit, Y. Lu, S. Talbott, B.-H. Jiang, Y. Rojanasakul, Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1. J. Biol. Chem. 284, 28476–28484 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Yongsanguanchai, V. Pongrakhananon, A. Mutirangura, Y. Rojanasakul, P. Chanvorachote, Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am. J. Physiol. - Cell Ph 308, C89–C100 (2015)

    Article  CAS  Google Scholar 

  14. P. Chanvorachote, U. Nimmannit, C. Stehlik, L. Wang, B.-H. Jiang, B. Ongpipatanakul, Y. Rojanasakul, Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res. 66, 6353–6360 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. X. Weiming, L. Z. Liu, M. Loizidou, M. Ahmed, I. G. Charles, The role of nitric oxide in cancer. Cell Res. 12, 311–320 (2002)

    Article  Google Scholar 

  16. A. Huttenlocher, A. R. Horwitz, Integrins in cell migration. Cold Spring Harb. Perspect. Biol. 3, a005074 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  17. S. P. Holly, M. K. Larson, L. V. Parise, Multiple roles of integrins in cell motility. Exp. Cell Res. 261, 69–74 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. D. G. Stupack, D. A. Cheresh, Get a ligand, get a life: integrins, signaling and cell survival. J. Cell Sci. 115, 3729–3738 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. J. D. Hood, D. A. Cheresh, Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100 (2002)

    Article  PubMed  Google Scholar 

  20. H. Truong, E. H. Danen, Integrin switching modulates adhesion dynamics and cell migration. Cell Adhes. Migr. 3, 179–181 (2009)

    Article  Google Scholar 

  21. N. C. Wong, B. M. Mueller, C. F. Barbas, P. Ruminski, V. Quaranta, E. C. Lin, J. W. Smith, αv integrins mediate adhesion and migration of breast carcinoma cell lines. Clin. Exp. Metastasis 16, 50–61 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. R. Hosotani, M. Kawaguchi, T. Masui, T. Koshiba, J. Ida, K. Fujimoto, M. Wada, R. Doi, M. Imamura, Expression of integrin αvβ3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25, e30–e35 (2002)

    Article  PubMed  Google Scholar 

  23. P. T. Caswell, H. J. Spence, M. Parsons, D. P. White, K. Clark, K. W. Cheng, G. B. Mills, M. J. Humphries, A. J. Messent, K. I. Anderson, Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. D. Wang, S. Müller, A. R. Amin, D. Huang, L. Su, Z. Hu, M. A. Rahman, S. Nannapaneni, L. Koenig, Z. Chen, The pivotal role of integrin β1 in metastasis of head and neck squamous cell carcinoma. Clin. Cancer Res. 18, 4589–4599 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albiges-Rizo, M. R. Block, Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Exp. Cell Res. 314, 478–488 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. R. Mayor, C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends Cell Biol. 20, 319–328 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. W. Guo, F. G. Giancotti, Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 5, 816–826 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. S. H. Francis, J. L. Busch, J. D. Corbin, cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62, 525–563 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. H. Lee, J. S. Byun, P. J. Kong, H. J. Lee, D. K. Kim, H. S. Kim, J.-H. Sohn, J. J. Lee, S. Y. Lim, W. Chun, Inhibition of eNOS/sGC/PKG pathway decreases Akt phosphorylation induced by Kainic acid in mouse hippocampus. Korean J. Physiol. Pharmacol. 14, 37–43 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D. J. Sieg, C. R. Hauck, D. Ilic, C. K. Klingbeil, E. Schaefer, C. H. Damsky, D. D. Schlaepfer, FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. 2, 249–256 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. S. K. Mitra, D. D. Schlaepfer, Integrin-regulated FAK–Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18, 516–523 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. M. S. Roberts, A. J. Woods, T. C. Dale, P. van der Sluijs, J. C. Norman, Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of αvβ3 and α5β1 integrins. Mol. Cell Biol. 24, 1505–1515 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. P. K. Lala, C. Chakraborty, Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2, 149–156 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. P. Allavena, A. Sica, G. Solinas, C. Porta, A. Mantovani, The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 66, 1–9 (2008)

    Article  PubMed  Google Scholar 

  35. M. Valko, C. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. A. Sanuphan, P. Chunhacha, V. Pongrakhananon, P. Chanvorachote, Long-term nitric oxide exposure enhances lung cancer cell migration. Biomed. Res. Int. 2013, 186972 (2013). doi:10.1155/2013/186972

    Article  PubMed  PubMed Central  Google Scholar 

  37. P. Wongvaranon, V. Pongrakhananon, P. Chunhacha, P. Chanvorachote, Acquired resistance to chemotherapy in lung cancer cells mediated by prolonged nitric oxide exposure. Anticancer Res. 33, 5433–5444 (2013)

    CAS  PubMed  Google Scholar 

  38. P. Chanvorachote, U. Nimmannit, L. Wang, C. Stehlik, B. Lu, N. Azad, Y. Rojanasakul, Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J. Biol. Chem. 280, 42044–42050 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. P. Chunhacha, P. Chanvorachote, Roles of caveolin-1 on anoikis resistance in non small cell lung cancer. Int. J. Physiol. Pathophysiol. Pharmacol. 4, 149–155 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Maiuthed, P. Chanvorachote, Cisplatin at sub-toxic levels mediates integrin switch in lung cancer cells. Anticancer Res. 34, 7111–7117 (2014)

    CAS  PubMed  Google Scholar 

  41. E. G. Sarris, M. W. Saif, K. N. Syrigos, The biological role of PI3K pathway in lung cancer. Pharmaceuticals 5, 1236–1264 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Luo, B. D. Manning, L. C. Cantley, Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–262 (2003)

    Article  CAS  PubMed  Google Scholar 

  43. J. Brognard, A. S. Clark, Y. Ni, P. A. Dennis, Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986–3997 (2001)

    CAS  PubMed  Google Scholar 

  44. S. K. Mitra, D. A. Hanson, D. D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Thailand Research Fund (RSA5780043). The funders had no role in the study design, the data collection and analysis, the decision to publish or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pithi Chanvorachote.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saisongkorh, V., Maiuthed, A. & Chanvorachote, P. Nitric oxide increases the migratory activity of non-small cell lung cancer cells via AKT-mediated integrin αv and β1 upregulation. Cell Oncol. 39, 449–462 (2016). https://doi.org/10.1007/s13402-016-0287-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0287-3

Keywords

Navigation