Skip to main content
Log in

Dual-objective optimization of ultrasound-assisted organic acid extraction of pectin from umbu (Spondias tuberosa L.): a promising Brazilian native fruit from Caatinga biome

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Fruit waste and by-products have considerable potential for valorization as a source of value-added compounds of industrial interest, and unconventional substrates, including native fruits, are a promising source of pectins. This study investigated the potential of umbu (Spondias tuberosa L.) peel as a raw material for pectin isolation using high-intensity ultrasound technology and organic acid for the development of an eco-friendly extraction method aiming high yields and adequate degree of esterification. After optimization through central composite design (CCD) with three independent variables (2³) and five levels, a high yield close to 22% of low esterified pectin (DE = 46%) was achieved under ultrasound amplitude of 60%, SLR (solid-to-liquid ratio) of 1:33, and pH 1.5. The extraction process was validated, and the effects of different acids on the yield of pectins and DE were evaluated, demonstrating that the use of citric acid allows yields of around 22% of low methoxyl pectin (LMP) to be achieved, confirming the reproducibility of the process, while using oxalic acid, nitric acid, and hydrochloric acid led to the production of around 13% of high methoxyl pectin (HMP). The quality of pectins, assessed through instrumental color, showed significant differences when compared to commercial citrus pectin CCP, which demonstrated the influence of the type of raw material and extraction method on the quality of the product obtained. Therefore, our study describes for the first time the extraction of pectins from umbu peels using ultrasound technology, proving that this material is a promising source of LMP and HMP pectins and that this approach can considered  an efficient green method to obtain different food grade pectins with higher yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Castro-Muñoz R, Boczkaj G, Gontarek E, Cassano A, Fíla V (2020) Membrane technologies assisting plant-based and agro-food by-products processing: a comprehensive review. Trends Food Sci Technol 95:219–232. https://doi.org/10.1016/j.tifs.2019.12.003

    Article  Google Scholar 

  2. Castro-Muñoz R, Ahmad MZ, Cassano A (2023) Pervaporation-aided processes for the selective separation of aromas, fragrances and essential (AFE) solutes from agro-food products and wastes. Food Rev Int 39(3):1499–1525. https://doi.org/10.1080/87559129.2021.1934008

    Article  Google Scholar 

  3. Ferreyra-Suarez D, Paredes-Vargas L, Jafari SM, García-Depraect O, Castro-Muñoz R (2024) Extraction pathways and purification strategies towards carminic acid as natural-based food colorant: a comprehensive review. Adv Colloid Interface Sci 323:103052. https://doi.org/10.1016/j.cis.2023.103052

    Article  Google Scholar 

  4. Valencia-Arredondo JA, Hernández-Bolio GI, Cerón-Montes GI, Castro-Muñoz R, Yáñez-Fernández J (2020) Enhanced process integration for the extraction, concentration and purification of di-acylated cyanidin from red cabbage. Sep Purif Technol 238:116492. https://doi.org/10.1016/j.seppur.2019.116492

    Article  Google Scholar 

  5. Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R (2023) A comprehensive review of phytonutrients as a dietary therapy for obesity. Foods 12(19):3610. https://doi.org/10.3390/foods12193610

    Article  Google Scholar 

  6. Castro-Muñoz R, Díaz-Montes E, Cassano A, Gontarek E (2020) Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit Rev Food Sci Nutr 61(13):2152–2174. https://doi.org/10.1080/10408398.2020.1772717

    Article  Google Scholar 

  7. Hernández-Pinto FJ, Miranda-Medina JD, Natera-Maldonado A, Vara-Aldama Ó, Ortueta-Cabranes MP, Vázquez del Mercado-Pardiño JA, El-Aidie SAM, Siddiqui SA, Castro-Muñoz R (2024) Arabinoxylans: a review on protocols for their recovery, functionalities and roles in food formulations. Int J Biol Macromol 259: 129309. https://doi.org/10.1016/j.ijbiomac.2024.129309

  8. Scarano P, Sciarrillo R, Tartaglia M, Zuzolo D, Guarino C (2022) Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review. Trends Food Sci Technol 122:157–170. https://doi.org/10.1016/j.tifs.2022.02.003

    Article  Google Scholar 

  9. Castro-Muñoz R, Díaz‐Montes E, Gontarek‐Castro E, Boczkaj G, Galanakis CM (2021) A comprehensive review on current and emerging technologies toward the valorization of bio‐based wastes and by products from foods. Compr Rev Food Sci Food Saf 21(1):46–105. https://doi.org/10.1111/1541-4337.12894

    Article  Google Scholar 

  10. Ferreira SF, Buller LS, Maciel-Silva FW, Sganzerla WG, Berni MD, Forster‐Carneiro T (2020) Waste management and bioenergy recovery from açaí processing in the Brazilian amazonian region: a perspective for a circular economy. Biofuel Bioprod Biorefin 15(1):37–46. https://doi.org/10.1002/bbb.2147

    Article  Google Scholar 

  11. Silva JMC, Leal IR, Tabarelli ME (2017) Caatinga. The largest tropical dry forest region in South America. https://doi.org/10.1007/978-3-319-68339-3

  12. Luna EM, Lopes HTO, Rodrigues FAÁ, Coutinho HDM, Oliveira LCC (2022) Antioxidant potential of the Caatinga flora. Phytomed Plus 2(2):100240. https://doi.org/10.1016/j.phyplu.2022.100240

    Article  Google Scholar 

  13. Araujo HFP, Garda AA, Girão e Silva WA, Nascimento NFF, Mariano EF, Silva JMC (2022) The Caatinga region is a system and not an aggregate. J Arid Environ 203:104778. https://doi.org/10.1016/j.jaridenv.2022.104778

    Article  Google Scholar 

  14. Vieira ÉA, Coêlho JGS, Grisi CVB, Santos BS, Silva Júnior JC, Alcântara MA, Meireles BRLA, Santos NA, Cordeiro AMTM (2022) Correlation and influence of antioxidant compounds of peels and pulps of different species of cacti from Brazilian Caatinga biome using principal component analysis. S Afr J Bot 147:434–442. https://doi.org/10.1016/j.sajb.2022.02.005

    Article  Google Scholar 

  15. Gouvêa RF, Ribeiro LO, Souza ÉF, Penha EM, Matta VM, Freitas SP (2017) Effect of enzymatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. J Food Sci Technol 54(7):2176–2180. https://doi.org/10.1007/s13197-017-2630-8

    Article  Google Scholar 

  16. De Oliveira APD, De Oliveira Almeida TJ, Santos TMB, Dias FS (2021) Symbiotic goat milk ice cream with umbu fortified with autochthonous goat cheese lactic acid bacteria. LWT 141:110888. https://doi.org/10.1016/j.lwt.2021.110888

    Article  Google Scholar 

  17. De Oliveira RL, Dias JL, Da Silva OS, Porto TS (2018) Immobilization of pectinase from aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor. Food Bioprod Process 109:918. https://doi.org/10.1016/j.fbp.2018.02.005

    Article  Google Scholar 

  18. Vidigal MCTR, Minim VPR, Carvalho NB, Milagres MP, Gonçalves ACA (2011) Effect of a health claim on consumer acceptance of exotic Brazilian fruit juices: Açaí (Euterpe oleracea Mart.), Camu-Camu (Myrciaria dubia), Cajá (Spondias lutea L.) and Umbu (Spondias tuberosa Arruda). Food Res Int 44(7):19881996. https://doi.org/10.1016/j.foodres.2010.11.028

    Article  Google Scholar 

  19. De Lima MAC, Silva SM, De Oliveira VR (2018) Umbu Spondias tuberosa. Exotic Fruits 427433. https://doi.org/10.1016/b978-0-12-803138-4.00057-5

  20. Reichembach LH, Petkowicz CLO (2021) Pectins from alternative sources and uses beyond sweets and jellies: an overview. Food Hydrocoll 118:106824. https://doi.org/10.1016/j.foodhyd.2021.106824

    Article  Google Scholar 

  21. Blanco-Pérez F, Steigerwald H, Schülke S, Vieths S, Toda M, Scheurer S (2021) The dietary fiber pectin: health benefits and potential for the treatment of allergies by modulation of gut microbiota. Curr Allergy Asthma Rep 21(10). https://doi.org/10.1007/s11882-021-01020-z

  22. Sharma P, Osama K, Gaur VK, Farooqui A, Varjani S, Younis K (2023) Sustainable utilization of Citrus limetta peel for obtaining pectin and its application in cookies as a fat replacer. J Food Sci Technol 60(3):975–986. https://doi.org/10.1007/s13197-022-05424-1

    Article  Google Scholar 

  23. Roman-Benn A, Contador CA, Li M-W, Lam H-M, Ah-Hen K, Ulloa PE, Ravanal MC (2023) Pectin: an overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem Adv 2:100192. https://doi.org/10.1016/j.focha.2023.100192

    Article  Google Scholar 

  24. Marić M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Rimac Brnčić S (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37. https://doi.org/10.1016/j.tifs.2018.03.022

    Article  Google Scholar 

  25. Ciriminna R, Fidalgo A, Scurria A, Ilharco LM, Pagliaro M (2022) Pectin: new science and forthcoming applications of the most valued hydrocolloid. Food Hydrocoll 127:107483. https://doi.org/10.1016/j.foodhyd.2022.107483

    Article  Google Scholar 

  26. Adimas MA, Abera BD (2023) Valorization of fruit and vegetable by-products for extraction of pectin and its hydrocolloidal role in low-fat yoghurt processing. LWT 189:115534. https://doi.org/10.1016/j.lwt.2023.115534

    Article  Google Scholar 

  27. Gavahian M, Mathad GN, Pandiselvam R, Lin J, Sun D-W (2021) Emerging technologies to obtain pectin from food processing by-products: a strategy for enhancing resource efficiency. Trends Food Sci Technol 115:42–54. https://doi.org/10.1016/j.tifs.2021.06.018

    Article  Google Scholar 

  28. Kumar K, Srivastav S, Sharanagat VS (2021) Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: a review. Ultrason Sonochem 70:105325. https://doi.org/10.1016/j.ultsonch.2020.105325

    Article  Google Scholar 

  29. Del Hierro JN, Herrera T, García-Risco MR, Fornari T, Reglero G, Martin D (2018) Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin. Food Res Int 109:440–447. https://doi.org/10.1016/j.foodres.2018.04.058

    Article  Google Scholar 

  30. Wani KM, Uppaluri RVS (2022) Continuous and pulsed ultrasound-assisted extraction of pectin from pomelo fruit peel using citric acid. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03513-x

  31. Singhal S, Deka SC, Koidis A, Hulle NRS (2024) Standardization of extraction of pectin from Assam lemon (Citrus limon Burm f.) peels using novel technologies and quality characterization. Biomass Convers Biorefin:. https://doi.org/10.1007/s13399-024-05367-x

  32. Wang W, Chen W, Zou M, Lv R, Wang D, Hou F, Feng H, Ma X, Zhong J, Ding T, Ye X, Liu D (2018) Applications of power ultrasound in oriented modification and degradation of pectin: a review. J Food Eng 234:98–107. https://doi.org/10.1016/j.jfoodeng.2018.04.016

    Article  Google Scholar 

  33. Chen T-T, Zhang Z-H, Wang Z-W, Chen Z-L, Ma H, Yan J-K (2021) Effects of ultrasound modification at different frequency modes on physicochemical, structural, functional, and biological properties of citrus pectin. Food Hydrocoll 113:106484. https://doi.org/10.1016/j.foodhyd.2020.106484

    Article  Google Scholar 

  34. Gerschenson LN, Fissore EN, Rojas AM, Idrovo Encalada AM, Zukowski EF, Higuera Coelho RA (2021) Pectins obtained by ultrasound from agroindustrial by-products. Food Hydrocoll 118:106799. https://doi.org/10.1016/j.foodhyd.2021.106799

    Article  Google Scholar 

  35. Panwar D, Panesar PS, Chopra HK (2023) Ultrasound-assisted extraction of pectin from Citrus limetta peels: optimization, characterization, and its comparison with commercial pectin. Food Biosci 51:102231. https://doi.org/10.1016/j.fbio.2022.102231

    Article  Google Scholar 

  36. Ke J, Jiang G, Shen G, Wu H, Liu Y, Zhang Z (2020) Optimization, characterization and rheological behavior study of pectin extracted from chayote (Sechium edule) using ultrasound assisted method. Int J Biol Macromol 147:688–698. https://doi.org/10.1016/j.ijbiomac.2020.01.055

    Article  Google Scholar 

  37. Jong SH, Abdullah N, Muhammad N (2023) Optimization of low-methoxyl pectin extraction from durian rinds and its physicochemical characterization. Carbohydr Polym Technol Appl 5:100263. https://doi.org/10.1016/j.carpta.2022.100263

    Article  Google Scholar 

  38. Kamal MM, Akhtaruzzaman Md, Sharmin T, Rahman M, Mondal SC (2023) Optimization of extraction parameters for pectin from guava pomace using response surface methodology. J Agric Food Res 11:100530. https://doi.org/10.1016/j.jafr.2023.100530

    Article  Google Scholar 

  39. Food and Agriculture Organization of the United Nations (FAO) database -FAOSTAT (2024) https://www.fao.org/faostat/en/#data/QCL. Accessed in 20/03/2024

  40. Pereira APA, Lauretti LBC, Alvarenga VO, Paulino BN, Angolini CFF, Neri-Numa IA, Orlando EA, Pallone JAL, Sant’Ana AS, Pastore GM (2020) Evaluation of fruta-do-lobo (Solanum lycocarpum St. Hill) starch on the growth of probiotic strains. Food Res Int 133:109187. https://doi.org/10.1016/j.foodres.2020.109187

    Article  Google Scholar 

  41. Pereira APA, Angolini CFF, Adani HB, Usberti FCS, Paulino BN, Clerici MTPS, Neri-numa IA, Moro TM, de Eberlin MA, Pastore MN GM (2021) Impact of ripening on the health-promoting components from fruta-do-lobo (Solanum lycocarpum St. Hill). Food Res Int 139:109910. https://doi.org/10.1016/j.foodres.2020.109910

    Article  Google Scholar 

  42. Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM (2021) Chemical characterization of Eugenia Stipitata: a native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Res Int 139:109904. https://doi.org/10.1016/j.foodres.2020.109904

    Article  Google Scholar 

  43. Souza FG, de Araújo FF, Orlando EA, Rodrigues FM, Chávez DWH, Pallone JAL, Neri-Numa IA, Sawaya ACHF, Pastore GM (2022) Characterization of Buritirana (Mauritiella armata) fruits from the Brazilian Cerrado: biometric and physicochemical attributes, Chemical Composition and antioxidant and antibacterial potential. Foods 11(6):786. https://doi.org/10.3390/foods11060786

    Article  Google Scholar 

  44. Sviech F, Ubbink J, Prata AS (2022) Potential for the processing of Brazilian fruits - a review of approaches based on the state diagram. LWT 156:113013. https://doi.org/10.1016/j.lwt.2021.113013

    Article  Google Scholar 

  45. Barbieri SF, da Costa Amaral S, Ruthes AC, de Oliveira Petkowicz CL, Kerkhoven NC, da Silva ERA, Silveira JLM (2019) Pectins from the pulp of gabiroba (Campomanesia Xanthocarpa Berg): structural characterization and rheological behavior. Carbohydr Polym 214:250–258. https://doi.org/10.1016/j.carbpol.2019.03.045

    Article  Google Scholar 

  46. Colodel C, de Petkowicz CL O (2019) Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocoll 86:193–200. https://doi.org/10.1016/j.foodhyd.2018.06.013

    Article  Google Scholar 

  47. Santos MR, Mendes RML, Ribeiro E (2023) Effects of pulp and pectin concentrations of passion fruit from Caatinga (Passiflora cincinnata mast.) On the production of symbiotic beverages. Food Chem Adv 3:100450. https://doi.org/10.1016/j.focha.2023.100450

    Article  Google Scholar 

  48. Zaid RM, Mishra P, Siti Noredyani AR, Tabassum S, Ab Wahid Z, Mimi Sakinah AM (2020) Proximate characteristics and statistical optimization of ultrasound-assisted extraction of high-methoxyl-pectin from Hylocereus polyrhizus peels. Food Bioprod Process 123:134–149. https://doi.org/10.1016/j.fbp.2020.06.011

    Article  Google Scholar 

  49. Abu Bakar FI, Abu Bakar MF, Abdullah N, Endrini S, Fatmawati S (2020) Optimization of extraction conditions of phytochemical compounds and anti-gout activity of Euphorbia hirta L. (Ara Tanah) using response surface methodology and liquid chromatography-mass spectrometry (LC-MS) analysis. Evid Based Complement Alternat Med 2020: 1–13. https://doi.org/10.1155/2020/4501261

  50. Gharibzahedi SMT, Smith B, Guo Y (2019) Pectin extraction from common fig skin by different methods: the physicochemical, rheological, functional, and structural evaluations. Int J Biol Macromol 136:275–283. https://doi.org/10.1016/j.ijbiomac.2019.06.040

    Article  Google Scholar 

  51. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489. https://doi.org/10.1016/0003-2697(73)90377-1

    Article  Google Scholar 

  52. Guandalini BBV, Rodrigues NP, Marczak LDF (2019) Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Res Int 119:455–461. https://doi.org/10.1016/j.foodres.2018.12.011

    Article  Google Scholar 

  53. Cangussu LB, Fronza P, Franca AS, Oliveira LS (2021) Chemical characterization and bioaccessibility assessment of bioactive compounds from Umbu (Spondias tuberosa A.) fruit peel and pulp flours. Foods 10(11):2597. https://doi.org/10.3390/foods10112597

    Article  Google Scholar 

  54. Alkandari D, Sarfraz H, Sidhu JS (2019) Amla fruit powder addition influences objective color and instrumental texture of pan bread. J Food Sci Technol 56(5):2750–2757. https://doi.org/10.1007/s13197-019-03766-x

    Article  Google Scholar 

  55. Yue Y, Wang B, Xi W, Liu X, Tang S, Tan X, Li G, Huang L, Liu Y, Bai J (2023) Modification methods, biological activities and applications of pectin: a review. Int J Biol Macromol 253:127523. https://doi.org/10.1016/j.ijbiomac.2023.127523

    Article  Google Scholar 

  56. Thirunavookarasu N, Kumar S, Shetty P, Shanmugam A, Rawson A (2024) Impact of ultrasound treatment on the structural modifications and functionality of carbohydrates – a review. Carbohydr Res 535:109017. https://doi.org/10.1016/j.carres.2023.109017

    Article  Google Scholar 

  57. Garcia-Garcia G, Rahimifard S, Matharu AS, Dugmore TIJ (2019) Life-cycle assessment of microwave-assisted pectin extraction at pilot scale. ACS Sustainable Chem Eng 7(5):5167–5175. https://doi.org/10.1021/acssuschemeng.8b06052

    Article  Google Scholar 

  58. Adetunji LR, Adekunle A, Orsat V, Raghavan V (2017) Advances in the pectin production process using novel extraction techniques: a review. Food Hydrocoll 62:239–250. https://doi.org/10.1016/j.foodhyd.2016.08.015

    Article  Google Scholar 

  59. Dias IP, Barbieri SF, Fetzer DEL, Corazza ML, Silveira JLM (2020) Effects of pressurized hot water extraction on the yield and chemical characterization of pectins from Campomanesia Xanthocarpa Berg fruits. Int J Biol Macromol 146:431–443. https://doi.org/10.1016/j.ijbiomac.2019.12.261

    Article  Google Scholar 

  60. Mao Y, Robinson JP, Binner ER (2023) Current status of microwave-assisted extraction of pectin. Chem Eng J 473:145261. https://doi.org/10.1016/j.cej.2023.145261

    Article  Google Scholar 

  61. Zhang L, Ye X, Ding T, Sun X, Xu Y, Liu D (2013) Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrason Sonochem 20(1):222–231. https://doi.org/10.1016/j.ultsonch.2012.07.021

    Article  Google Scholar 

  62. Qiu W-Y, Cai W-D, Wang M, Yan J-K (2019) Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing. Food Chem 297:125021. https://doi.org/10.1016/j.foodchem.2019.125021

    Article  Google Scholar 

  63. Patience NA, Schieppati D, Boffito DC (2021) Continuous and pulsed ultrasound pectin extraction from navel orange peels. Ultrason Sonochem 73:105480. https://doi.org/10.1016/j.ultsonch.2021.105480

    Article  Google Scholar 

  64. Sengar AS, Rawson A, Muthiah M, Kalakandan SK (2020) Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrason Sonochem 61:104812. https://doi.org/10.1016/j.ultsonch.2019.104812

    Article  Google Scholar 

  65. Shivamathi CS, Moorthy IG, Kumar RV, Soosai MR, Maran JP, Kumar RS, Varalakshmi P (2019) Optimization of ultrasound assisted extraction of pectin from custard apple peel: potential and new source. Carbohydr Polym 225:115240. https://doi.org/10.1016/j.carbpol.2019.115240

    Article  Google Scholar 

  66. Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J Food Eng 126:72–81. https://doi.org/10.1016/j.jfoodeng.2013.11.004

    Article  Google Scholar 

  67. Zahari NAAR, Chong GH, Abdullah LC, Chua BL (2020) Ultrasonic-assisted extraction (UAE) process on thymol concentration from Plectranthus Amboinicus leaves: Kinetic modeling and optimization. Processes 8(3):322. https://doi.org/10.3390/pr8030322

    Article  Google Scholar 

  68. Duwee YS, Kiew PL, Yeoh WM (2022) Multi-objective optimization of pectin extraction from orange peel via response surface methodology: yield and degree of esterification. J Food Meas Charact 16:1710–1724. https://doi.org/10.1007/s11694-022-01305-5

    Article  Google Scholar 

  69. Chaharbaghi E, Khodaiyan F, Hosseini SS (2017) Optimization of pectin extraction from pistachio green hull as a new source. Carbohydr Polym 173:107–113. https://doi.org/10.1016/j.carbpol.2017.05.047

    Article  Google Scholar 

  70. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. Rev Ultrason Sonochemistry 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  Google Scholar 

  71. Suhaimi SH, Hasham R, Hafiz Idris MK, Ismail HF, Mohd Ariffin NH, Abdul Majid FA (2019) Optimization of ultrasound-assisted extraction conditions followed by solid phase extraction fractionation from Orthosiphon Stamineus Benth (Lamiace) leaves for Antiproliferative Effect on prostate Cancer cells. Molecules 24(22):4183. https://doi.org/10.3390/molecules24224183

    Article  Google Scholar 

  72. Sun Z, Wang S, Zhou C, Ma Z, Qian F (2023) Optimization of ultrasound assisted organic acid extraction of pectin from pomelo peel by response surface methodology and its preliminary characterization. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-04200-1

  73. Vakilian K, Nateghi L, Javadi A, Anarjan N (2023) Optimization of conventional and ultrasound-assisted extraction of pectin from unripe grape pomace: extraction yield, degree of esterification, and galacturonic acid content. J Food Meas Charact 17(6):5777–5793. https://doi.org/10.1007/s11694-023-02085-2

    Article  Google Scholar 

  74. Cui J, Zhao C, Feng L, Han Y, Du H, Xiao H, Zheng J (2021) Pectins from fruits: relationships between extraction methods, structural characteristics, and functional properties. Trends Food Sci Technol 110:39–54. https://doi.org/10.1016/j.tifs.2021.01.077

    Article  Google Scholar 

  75. Colodel C, Vriesmann LC, Teófilo RF, de Petkowicz O, C. L (2020) Optimization of acid-extraction of pectic fraction from grape (Vitis vinifera Cv. Chardonnay) pomace, a Winery Waste. Int J Biol Macromol 161:204–213. https://doi.org/10.1016/j.ijbiomac.2020.05.272

    Article  Google Scholar 

  76. Iñiguez-Moreno M, Pizaña-Aranda JJP, Ramírez-Gamboa D, Ramírez-Herrera CA, Araújo RG, Flores-Contreras EA, Iqbal HMN, Parra-Saldívar R, Melchor-Martínez EM (2024) Enhancing pectin extraction from orange peel through citric acid-assisted optimization based on a dual response. Int J Biol Macromol 263:130230. https://doi.org/10.1016/j.ijbiomac.2024.130230

    Article  Google Scholar 

  77. Larsen N, Bussolo de Souza C, Krych L, Barbosa Cahú T, Wiese M, Kot W, Hansen KM, Blennow A, Venema K, Jespersen L (2019) Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00223

  78. Cui Y, Chen J, Zhang S (2023) The effect of degree of esterification of pectin on the interaction between pectin and wheat gluten protein. Food Hydrocoll 136:108272. https://doi.org/10.1016/j.foodhyd.2022.108272

    Article  Google Scholar 

  79. Fraeye I, Deroeck A, Duvetter T, Verlent I, Hendrickx M, Vanloey A (2007) Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chem 105(2):555–563. https://doi.org/10.1016/j.foodchem.2007.04.009

    Article  Google Scholar 

  80. Tran NTK, Nguyen VB, Tran TV, Nguyen TTT (2023) Microwave-assisted extraction of pectin from jackfruit rags: optimization, physicochemical properties and antibacterial activities. Food Chem 418:135807. https://doi.org/10.1016/j.foodchem.2023.135807

    Article  Google Scholar 

  81. Hosseini SS, Khodaiyan F, Kazemi M, Najari Z (2019) Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int J Biol Macromol 125:621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096

    Article  Google Scholar 

  82. Caroço RF, Kim B, Santacoloma PA, Abildskov J, Lee JH, Huusom JK (2019) Analysis and model-based optimization of a pectin extraction process. J Food Eng 244:159–169. https://doi.org/10.1016/j.jfoodeng.2018.09.016

    Article  Google Scholar 

  83. Singhal S, Hulle NRS (2022) Citrus pectins: structural properties, extraction methods, modifications and applications in food systems – a review. Appl Food Res 2(2):100215. https://doi.org/10.1016/j.afres.2022.100215

    Article  Google Scholar 

  84. Roy S, Priyadarshi R, Łopusiewicz Ł, Biswas D, Chandel V, Rhim JW (2023) Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: a review. Int J Biol Macromol 239:124248. https://doi.org/10.1016/j.ijbiomac.2023.124248

    Article  Google Scholar 

  85. Nguyen BMN, Pirak T (2019) Physicochemical properties and antioxidant activities of white dragon fruit peel pectin extracted with conventional and ultrasound-assisted extraction. Cogent Food Agric 5(1):1633076. https://doi.org/10.1080/23311932.2019.1633076

    Article  Google Scholar 

  86. Khubber S, Chaturvedi K, Thakur N, Sharma N, Yadav SK (2021) Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocoll 111:106240. https://doi.org/10.1016/j.foodhyd.2020.106240

    Article  Google Scholar 

  87. Saurabh V, Vathsala V, Yadav SK, Sharma N, Varghese E, Saini V, Singh SP, Dutta A, Kaur C (2023) Extraction and characterization of ultrasound assisted extraction: improved functional quality of pectin from jackfruit (Artocarpus heterophyllus Lam.) Peel waste. J Food Meas Charact 17(6):6503–6521. https://doi.org/10.1007/s11694-023-02126-w

    Article  Google Scholar 

  88. Megías-Pérez R, Ferreira-Lazarte A, Villamiel M (2023) Valorization of grape pomace as a renewable source of techno-functional and antioxidant pectins. Antioxidants 12(4):957. https://doi.org/10.3390/antiox12040957

    Article  Google Scholar 

  89. Nadar CG, Arora A, Shastri Y (2022) Sustainability challenges and opportunities in pectin extraction from fruit waste. ACS Eng Au 2(2):61–74. https://doi.org/10.1021/acsengineeringau.1c00025

    Article  Google Scholar 

  90. Huang Y, Qi J, Liao J, Jiang W, Cao Y, Xiao J, Yang X (2021) Oxalic extraction of high methoxyl pectin and its application as a stabiliser. Int J Food Sci Technol 56(10):5220–5229. https://doi.org/10.1111/ijfs.15135

    Article  Google Scholar 

  91. Şen E, Göktürk E, Hajiyev V, Uğuzdoğan E (2023) Comparisons of pulsed ultrasound-assisted and hot‐acid extraction methods for pectin extraction under dual acid mixtures from onion (Allium cepa L.) waste. Food Sci Nutr 11(11):7320–7329. https://doi.org/10.1002/fsn3.3657

    Article  Google Scholar 

  92. Van Hung P, Anh MNT, Hoa PN, Phi NTL (2020) Extraction and characterization of high methoxyl pectin from Citrus maxima peels using different organic acids. J Food Meas Charact 15(2):1541–1546. https://doi.org/10.1007/s11694-020-00748-y

    Article  Google Scholar 

  93. Kute AB, Mohapatra D, Kotwaliwale N, Giri SK, Sawant BP (2019) Characterization of pectin extracted from orange peel powder using microwave-assisted and acid extraction methods. Agric Res 9(2):241–248. https://doi.org/10.1007/s40003-019-00419-5

    Article  Google Scholar 

  94. Forouhar A, Hamdami N, Djelveh G, Gardarin C, Pierre G, Ursu AV, Michaud P (2023) The effect of ultrasound pretreatment on pectin extraction from watermelon rind using microwave-assisted extraction. Appl Sci (Basel) 13(9):5558. https://doi.org/10.3390/app13095558

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development - CNPq (Grant Number 408049/2023-5), Coordination for the Improvement of Higher Education Personnel (CAPES) (Finance Code 001 and Grant Number 88887.690875/2022-00), “Programa de Desenvolvimento da Pós-Graduação (PDPG) – Emergencial de Consolidação Estratégica dos Programas de Pós-Graduação stricto sensu acadêmicos” (Grant Number: 88881.708195/2022-01), and PRPPG and PROEXT Federal University of Bahia (PIBIC 2022–2023, Project number 23533; PIBIC 2023–2024, Project number 26135; SIATEX Project number 20557).

Author information

Authors and Affiliations

Authors

Contributions

Joseane Cardoso Gomes de Alencar: investigation, experimental performance, formal analysis, data analysis, manuscript preparation; Denise Nathiele Santos Souza Batista, Jacqueline Carvalho de Souza, Isabelle Palma Patricio Santos: experimental performance, formal analysis; Juliano Lemos Bicas: investigation, data analysis, manuscript preparation; Maria Eugênia de Oliveira Mamede: data analysis, Bruno Nicolau Paulino: investigation, data analysis, supervision.

Corresponding author

Correspondence to Bruno Nicolau Paulino.

Ethics declarations

Ethical approval

The authors claim that none of the material in the paper has been published or is under consideration for publication elsewhere.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Alencar, J.C.G., Batista, D.N.S.S., de Souza, J.C. et al. Dual-objective optimization of ultrasound-assisted organic acid extraction of pectin from umbu (Spondias tuberosa L.): a promising Brazilian native fruit from Caatinga biome. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05720-0

Keywords

Navigation