Skip to main content
Log in

Analysis of chemical composition and biological efficiency of leaf essential oils isolated from seven species of Cinnamomum of the Western Ghats, India

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The chemical profiles of essential oils (EOs) of 7 Cinnamomum species (C. sulphuratum, C. perotettii, C. verum, C. wightii, C. camphora, C. glanduliferum, and C. malabatrum) composed from assorted parts of Western Ghats were analyzed. The antioxidant, antibacterial, and larvicidal potentialities of 7 essential oils were also investigated. Cinnamomum verum was observed to have the maximum yield (1.96%) of EO followed by C. malabatrum (1.71%). GC-MS analysis of EOs reported the highest amount of eugenol (38.04%), shyobunol (13.31%) in C. verum, whereas C. perrottetii identified 14–42 phytocompounds including terpenes, sesquiterpenes, monoterpenes, diterpenes, and phenylpropanoids, esters, aldehydes, and fatty acids. In the antibacterial activity, the higher zone of inhibition of C. malabatrum showed against S. pyogenes (28 ± 2.5 mm) and E. faecalis (27 ± 1.24 mm) followed by C. verum has shown notable inhibition zone against K. pneumoniae (26 ± 1.15 mm) and S. flexneri (24.33 ± 0.88 mm), with MIC value against C. verum, showed MIC value (1.17 ± 0.34 μg/mL) against S. flexneri, S. pyogenes, and K. pneumonia. All the Cinnamomum oil samples exhibited appreciable antioxidant radical scavenging activities with IC50 values ranged 10.83–15.06 μg/mL. All the oil samples showed promising larvicidal activity against the late-third instar larvae of Aedes aegypti. Extending the present study with in vivo and in vitro animal studies will confirm the potentiality of Cinnamomum oils in the field of biomedicine to detect novel medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54:1822–1828. https://doi.org/10.1021/jf051922u

    Article  Google Scholar 

  2. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46:446–475. https://doi.org/10.1016/j.fct.2007.09.106

    Article  Google Scholar 

  3. Shaaban HAE, El-Ghorab AH, Shibamoto T (2012) Bioactivity of essential oils and their volatile aroma components: Review. J Essen Oil Res 24:203–212. https://doi.org/10.1080/10412905.2012.659528

    Article  Google Scholar 

  4. Liu Z, Li H, Zhu Z, Huang D, Qi Y, Ma C, Zou Z, Ni H (2022) Cinnamomum camphora fruit peel as a source of essential oil extracted using the solvent-free microwave-assisted method compared with conventional hydrodistillation. LWT 153:112549. https://doi.org/10.1016/j.lwt.2021.112549

    Article  Google Scholar 

  5. Meziane IAA, Maizi N, Abatzoglou N, Benyoussef EH (2020) Modelling and optimization of energy consumption in essential oil extraction processes. Food and Bioprod Process 119:373–389. https://doi.org/10.1016/j.fbp.2019.11.018

    Article  Google Scholar 

  6. Shahrivari S, Alizadeh S, Ghassemi-Golezani K, Aryakia E (2022) A comprehensive study on essential oil compositions, antioxidant, anticholinesterase and antityrosinase activities of three Iranian Artemisia species. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-11375-6

    Article  Google Scholar 

  7. Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran D (2019) Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol 2:49–55. https://doi.org/10.1016/j.gaost.2019.03.001

    Article  Google Scholar 

  8. Al-Zereini WA, Al-Trawneh IN, Al-Qudah MA, Tum Allah HM, Al Rawashdeh HA, Abudayeh ZH (2022) Essential oils from Elettaria cardamomum (L.) Maton grains and Cinnamomum verum J. Presl barks: Chemical examination and bioactivity studies. J Pharm Pharmacogn Res 10:173–185

    Article  Google Scholar 

  9. Lee R, Balick MJ (2005) Sweet wood-Cinnamon and its importance as a spice and medicine. Explore: J Sci Heal 1:61–64. https://doi.org/10.1046/j.1365-2672.2001.01428.x

    Article  Google Scholar 

  10. Seow YX, Yeo CR, Chung HL, Yuk HG (2013) Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr 54:625–644. https://doi.org/10.1080/10408398.2011.599504

    Article  Google Scholar 

  11. Mabberley D (2008) Mabberley’s plant-book: a portable dictionary of plants, their classifications and uses. Cambridge, UK: Cambridge University Press 3:188–496

    Google Scholar 

  12. Manikandan G, Ramasubbu R (2020) Antimicrobial activity of leaf extracts of Memecylon heyneanum Benth. ex Wight & Arn.: An Endemic Tree Species of Southern Western Ghats. Adv Zoo & Bot 8(3):258–268. http://www.hrpub.org. https://doi.org/10.13189/azb.2020.080323

    Article  Google Scholar 

  13. Satyal P, Chhetri BK, Dosoky NS, Poudel A, Setzer WN (2015) Chemical composition of Nardostachys grandiflora rhizome oil from Nepal–a contribution to the chemotaxonomy and bioactivity of nardostachys. Nat Prod Commun 10(6):1067–1070

    Google Scholar 

  14. Yu H, Ren X, Yang F, Xie Y, Guo Y, Cheng Y, Yao W (2022) Antimicrobial and anti-dust mite efficacy of Cinnamomum camphora Chvar. Borneol essential oil using pilot-plant neutral cellulase-assisted steam distillation. Lett Appl Microbiol 74:258–267. https://doi.org/10.1111/lam.13610

    Article  Google Scholar 

  15. Bhattacharya P, Dey A, Neogi S (2021) An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J Mater Chem B 9:5329–5339. https://doi.org/10.1039/D1TB00875G

    Article  Google Scholar 

  16. Singh G, Maurya S, de Lampasona MP, CAN C (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 45:1650–1661. https://doi.org/10.1016/j.fct.2007.02.031

    Article  Google Scholar 

  17. Kumar S, Kumari R, Mishra S (2019) Pharmacological properties and their medicinal uses of Cinnamomum: a review. J Pharm Pharmacol 3:13–16. https://doi.org/10.1111/jphp.13173

    Article  Google Scholar 

  18. Kirtikar KR, Basu BD (1984) Indian Medicinal Plants. Vol. III, Bishen Singh and Mahendra Pal Singh, Dehradun, Allahabad. 1664-1666

  19. Dai J, Zhang X, Luo Z, Wang R, Liu Z, He X, Rao Z, Guan H (2020) Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. J Hydrol 589:125–199

    Article  Google Scholar 

  20. Wan N, Li Y, Huang XY, Li YH, Zheng Q, Wu ZF (2022) A comparative evaluation of chemical composition and antimicrobial activities of essential oils extracted from different chemotypes of Cinnamomum camphora (L.) Presl. Grasas y Aceites 73:e441–e441

    Article  Google Scholar 

  21. Bouyahya A, Lagrouh F, El Omari N, Bourais I, El Jemli M, Marmouzi I, Salhi N, Faouzi MA, Belmehdi O, Dekka N, Bakri Y (2020) Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. Biocat Agric Biotechnol 23:101471. https://doi.org/10.1016/j.bcab.2019.101471

    Article  Google Scholar 

  22. Ali SS, Abd Elnabi MK, Alkherkhisy MM, Hasan A, Li F, Khalil M, Sun J, El-Zawawy N (2022) Exploring the potential of Cinnamomum zeylanicum oil against drug resistant Helicobacter pylori-producing cytotoxic genes. J Appl Biomed 20:22–36

    Article  Google Scholar 

  23. Wang R, Wang R, Yang B (2009) Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innov Food Sci Emerg Technol 10:289–292. https://doi.org/10.1016/j.ifset.2008.12.002

    Article  Google Scholar 

  24. Sasikala N, Ramasubbu R (2022) Chemical composition, antimicrobial and antioxidant properties of essential oils of Trichopus zeylanicus ssp. travancoricus. Ind J Natur Prod Resour 12:570–577. https://doi.org/10.56042/ijnpr.v12i4.35929

    Article  Google Scholar 

  25. Singh C, Singh S, Pande C, Tewari G, Pande V, Sharma P (2013) Exploration of antimicrobial potential of essential oils of Cinnamomum glanduliferum, Feronia elephantum, Bupleurum hamiltonii and Cyclospermum leptophyllum against foodborne pathogens. Pharma Biol 51:1607–1610. https://doi.org/10.3109/13880209.2013.805234

    Article  Google Scholar 

  26. Elyemni M, El Ouadrhiri F, Lahkimi A, Elkamli T, Bouia A, Eloutassi N (2022) Chemical composition and antimicrobial activity of essential oil of wild and cultivated Rosmarinus officinalis from two Moroccan localities. Ecol Eng:23

  27. Das S, Diyali S, Vinothini G, Perumalsamy B, Balakrishnan G, Ramasamy T, Dharumadurai D, Biswas B (2020) Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon 6(9):e04953. https://doi.org/10.1016/j.heliyon.2020.e04953e04953

    Article  Google Scholar 

  28. Soler-Rivas C, Esp NJC, Wichers HJ (2000) An easy and fast to test to compare total free radical scavenger capacity of foodstuffs. Phytochem Anal 11:330–338. https://doi.org/10.1021/jf9908188

    Article  Google Scholar 

  29. Molyneux P (2004) The use of the stable radical Diphenyl picryl hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26:211–219

    Google Scholar 

  30. World Health Organization (1981) Instruction for determining the susceptibility or resistance of mosquito larvae to insecticide. 1981 WHO/VBC/81.80

  31. Bailer J, Aichinger T, Hackl G, de Hueber K, Dachler M (2001) Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind Crop Prod 14:229–239. https://doi.org/10.1016/S0926-6690(01)00088-7

    Article  Google Scholar 

  32. Cannon JB, Cantrell CL, Astatkie T, Zheljazkov VD (2013) Modification of yield and composition of essential oils by distillation time. Ind Crop Prod 41:214–220. https://doi.org/10.1016/j.indcrop.2012.04.021

    Article  Google Scholar 

  33. Mugao LG, Gichimu BM, Muturi PW, Mukono ST (2020) Characterization of the volatile components of essential oils of selected plants in Kenya. Biochem Res Int 2020: 8861798. https://doi.org/10.1155/2020/8861798

  34. Murarikova A, Tazky A, Neugebauerova J, Plankova A, Jampílek J, Mucaji P, Mikus P (2017) Characterization of essential oil composition in different basil species and pot cultures by a GC-MS method. Molecules 22:1221. https://doi.org/10.3390/molecules22071221

    Article  Google Scholar 

  35. Zandi-Sohani N, Hojjati M, Carbonell-Barrachinan AA (2012) Bioactivity of Lantana camara L. essential oil against Callosobruchus maculatus (Fabricius). Chil J AgricRes 72:502

    Article  Google Scholar 

  36. Rameshkumar KB, George V (2006) Cinnamomum sulphuratum Nees-a Benzyl Benzoate - Rich New Chemotype from Southern Western Ghats, India. J Essent Oil Res 18:521–522. https://doi.org/10.1080/10412905.2006.9699159

    Article  Google Scholar 

  37. Sriramavaratharajan V, Murugan R (2020) Chemical profiling of the Leaf essential oils of Cinnamomum species used as a spice in Southern India. JBAPN 10:317–324. https://doi.org/10.1080/22311866.2020.1806730

    Article  Google Scholar 

  38. Saranya M, Arun T, Iyappan P (2012) In vitro antibacterial activity and preliminary phytochemical analysis of leaf extracts of Argemone Mexicana Linn–A medicinal plant. Int J Curr Pharm Res 4:85–87

    Google Scholar 

  39. Joshi RK (2013) Chemical composition of the essential oil of Chromolaena odorata (L.) RM King & H. Rob. roots from India. J Chem 2013:195057. https://doi.org/10.1155/2013/195057

  40. Bos R, Woerdenbag HJ, Hendriks H, Smit HF, Wikstrm HV, Scheffer JJC (1997) Composition of the essential oil from roots and rhizomes of Valeriana wallichii DC. Flavour Fragr J 12:123–131

    Article  Google Scholar 

  41. Leela NK, Prasath D, Venugopal MN (2008) Essential oil composition of selected cardamom genotypes at different maturity levels. Indian J Hortic 65:366–369

    Google Scholar 

  42. Ananthakrishnan R, Santhosh Kumar ES, Rameshkumar KB (2018) Comparative chemical profiles of essential oil constituents of eight wild Cinnamomum species from the Western Ghats of India. Nat Prod Commun 13:1934578X1801300525. https://doi.org/10.1177/1934578X1801300525

    Article  Google Scholar 

  43. Su J (2012) Composition and biological activities of the essential oil extracted from a novel plant of Cinnamomum camphora Chvar Borneol J Med Plants Res:6. https://doi.org/10.5897/JMPR12.157

  44. Adedeji J, Hartman TG, Rosen RT, Ho CT (1991) Free and glycosidically bound aroma compounds in hog plum (Spondias mombins L.). J Agric Food Chem 39:1494–1497

    Article  Google Scholar 

  45. Eri S, Khoo BK, Lech J, Hartman TG (2000) Direct thermal desorption-gas chromatography and gas chromatography-mass spectrometry profiling of hop (Humulus lupulus L.) essential oils in support of varietal characterization. J Agric Food Chem 48:1140–1149

    Article  Google Scholar 

  46. Chung TY, Eiserich JP, Shibamoto T (1993) Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thunb). J Agric Food Chem 41:1693–1697. https://doi.org/10.1021/jf00034a033

    Article  Google Scholar 

  47. Chang R, de Morais SA, Napolitano DR, Duarte KC, Guzman VB, Nascimento EAD (2011) A new approach for quantifying furanodiene and curzerene: a case study on the essential oils of Eugenia uniflora L., Myrtaceae (Pitangueira) leaves. Rev Brasi Farmacogn 21:392–396. https://doi.org/10.1590/S0102-695X2011005000042

    Article  Google Scholar 

  48. Hung NH, Huong LT, Chung NT, Thuong NTH, Satyal P, Dung NA, Tai TA, Setzer WN (2020) Callicarpa species from central Vietnam: essential oil compositions and mosquito larvicidal activities. Plants 9:113. https://doi.org/10.3390/plants9010113

    Article  Google Scholar 

  49. Prasad W, Khamrui K, Mandal S, Badola R (2018) Effect of combination of essential oils on physicochemical and sensorial attributes of burfi in comparison with individual essential oil and BHA. Int J Dairy Technol 71:810–819. https://doi.org/10.1111/1471-0307.12512

    Article  Google Scholar 

  50. Sitarek P, Rijo P, Garcia C, Skała E, Kalemba D, Białas AJ, Szemraj J, Pytel D, Toma M, Wysokińska H, Śliwiński T (2017) Antibacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxid Med Cell Long 2017:7384061. https://doi.org/10.1155/2017/7384061

    Article  Google Scholar 

  51. Son LC, Dai DN, Thang TD, Huyen DD, Ogunwande IA (2014) Analysis of the essential oils from five Vietnamese Litsea species (Lauraceae). J Essen Oil-Bear Plants 17:960–971. https://doi.org/10.1080/0972060X2014.935068

    Article  Google Scholar 

  52. Kurkçuoglu M, Yildiz G, Kose YB (2019) Essential oil composition of two Scutellaria species from Tokat, Turkey. J Turkish Chem Soc Sect 6:115–118. https://doi.org/10.18596/jotcsa.466906

    Article  Google Scholar 

  53. Szafranek B, Chrapkowska K, Pawińska M, Szafranek J (2005) Analysis of leaf surface sesquiterpenes in potato varieties. J Agric Food Chem 53:2817–2822. https://doi.org/10.1021/jf040437g

    Article  Google Scholar 

  54. Wesołowska A, Grzeszczuk M, Kulpa D (2015) GC-MS analysis of the essential oil from flowers of Chrysanthemum coronarium L. propagated conventionally and derived from in vitro cultures. Acta Chromatogr 27:525–539. https://doi.org/10.1556/achrom.27.2015.3.9

    Article  Google Scholar 

  55. Formisano C, Rigano D, Senatore F, Raimondo FM, Maggio A, Bruno M (2012) Essential oil composition and antibacterial activity of Anthemis mixta and A. tomentosa (Asteraceae). Nat Prod Commun 7:1934578X1200701035

    Google Scholar 

  56. Hedin PA, Thompson AC, Gueldner RC (1972) Application of a sequential reduction regimen to fractionation of essential oils. Anal Chem 44(1254):1257. https://doi.org/10.1021/ac60315a030

    Article  Google Scholar 

  57. Leela NK, Vipin TM, Shafeekh KM, Priyanka V, Rema J (2009) Chemical composition of essential oils from aerial parts of Cinnamomum malabatrum (Burman f.) Bercht & Presl. Flavr Fragr J 24:13–16. https://doi.org/10.1002/ffj.1910

    Article  Google Scholar 

  58. Duquesnoy E, Dinh NH, Castola V, Casanova J (2006) Composition of a pyrolytic oil from cupressus funebris Endl. of Vietnamese origin. Flavour Fragr J 21:453–457

    Article  Google Scholar 

  59. Davies NW (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J Chromatogr A 503:1–24

    Article  Google Scholar 

  60. Custers Y (2009) GC volatile components analysis of different parts of Litchi chinensis. Thesis Uni. Gent.:1–58

  61. Politeo O, Jukic M (2007) Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem 101:379–385. https://doi.org/10.1016/j.foodchem.2006.01.045

    Article  Google Scholar 

  62. Yagi S, Babiker R, Tanova T, Schohn H (2016) Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pac J Trop Med 9:763–770. https://doi.org/10.1016/j.apjtm.2016.06.009

    Article  Google Scholar 

  63. Couladis M, Tsortanidou V, Francisci-Ortego J, Santos-Guerra A, Harvala C (2001) Composition of the essential oils of Argyranthemum species growing in the Canary Islands. Flavr Fragr J 16:103–106. https://doi.org/10.1002/ffj.954

    Article  Google Scholar 

  64. Jirovetz L, Buchbauer G, Stoyanova AS, Georgiev EV, Damianova ST (2003) Composition, quality control, and antimicrobial activity of the essential oil of long-time stored dill (Anethum graveolens L.) seeds from Bulgaria. J Agric Food Chem 51:3854–3857

    Article  Google Scholar 

  65. Karioti A, Skaltsa H, Demetzos C, Perdetzoglou D, Economakis CD, Salem AB (2003) Effect of nitrogen concentration of the nutrient solution on the volatile constituents of leaves of Salvia fruticosa Mill. in solution culture. J Agric Food Chem 51:6505–6508

    Article  Google Scholar 

  66. Aissaoui M, Chalard P, Figuérédo G, Marchioni E, Zao M, Benayache F, Benayache S (2014) Chemical composition of the essential oil of Salvia verbenaca (L.) Briq. ssp. pseudo-jaminiana (Chev.) M. Res J Pharm Biol Chem Sci 5:368–372

    Google Scholar 

  67. Kim YG, Lee JH, Kim SI, Baek KH, Lee J (2015) Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int J Food Microbiol 195:30–39. https://doi.org/10.1016/j.ijfoodmicro.2014.11.028

    Article  Google Scholar 

  68. Miyazawa M, Nomura M, Marumoto S, Mori K (2013) Characteristic odor components of essential oil from Scutellaria laeteviolacea. J Oleo Sci 62:51–56. https://doi.org/10.5650/jos.62.51

    Article  Google Scholar 

  69. Pino JA, Mesa J, Muñoz Y, Martí MP, Marbot R (2005) Volatile components from mango (Mangifera indica L.) cultivars. J Agric Food Chem 53:2213–2223

    Article  Google Scholar 

  70. Wangchuk P, Keller PA, Pyne SG, Taweechotipatr M, Kamchonwongpaisan S (2013) GC/GC-MS analysis, isolation and identification of bioactive essential oil components from the Bhutanese medicinal plant, Pleurospermum amabile. Nat Prod Commun 8:1934578X1300800930. https://doi.org/10.1177/1934578X1300800930

    Article  Google Scholar 

  71. Vidic D, Ćavar S, Šolić ME, Maksimović M (2010) Volatile constituents of two rare subspecies of Thymus praecox. Nat Prod Comm 5(7):1123–1126. https://doi.org/10.1177/1934578X1000500730

    Article  Google Scholar 

  72. Wu PS, Kuo YT, Chen SM, Li Y, Lou BS (2014) Gas chromatography-mass spectrometry analysis of photosensitive characteristics in citrus and herb essential oils. J Chromatogr Sep Tech 6:1–9. https://doi.org/10.4172/2157-7064.1000261

    Article  Google Scholar 

  73. Choi HS (2003) Character impact odorants of Citrus hallabong [(C. unshiu Marcov x C.sinensis Osbeck) x C. reticulata Blanco] cold- pressed peel oil. J Agric Food Chem 51:2687–2692. https://doi.org/10.1021/jf021069o

    Article  Google Scholar 

  74. Raina AP, Negi KS (2015) Essential oil composition of Valeriana jatamansi Jones from Himalayan regions of India. Indian J Pharm Sci 77:218

    Article  Google Scholar 

  75. Cullere L, Escudero A, Cacho J, Ferreira V (2004) Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J Agric Food Chem 52:1653–1660. https://doi.org/10.1021/jf0350820

    Article  Google Scholar 

  76. Cavalli JF, Tomi F, Bernardini AF, Casanova J (2003) Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr J 18:532–538. https://doi.org/10.1002/ffj.1263

    Article  Google Scholar 

  77. Galindo-Cuspinera V, Lubran MB, Rankin SA (2002) Comparison of volatile compounds in water-and oil-soluble annatto (Bixa orellana L.) extracts. J Agric Food Chem 50:2010–2015. https://doi.org/10.1021/jf011325h

    Article  Google Scholar 

  78. Zhao MP, Liu QZ, Liu Q, Liu ZL (2017) Identification of larvicidal constituents of the essential oil of Echinopsgrijsii roots against the three species of mosquitoes. Mol 22:205

    Article  Google Scholar 

  79. Sadashiva CT, Sharanappa P, Naidoo Y, Balachandran I (2013) Chemical composition of essential oil from the leaves of Premnacoriacea Clarke. Afr J Biotech 12

  80. Lesueur D, Ban NK, Bighelli A, Muselli A, Casanova J (2006) Analysis of the root oil of Fokienia hodginsii (Dunn) Henry et Thomas (Cupressaceae) by GC, GC–MS and 13C-NMR. Flavr Fragr J 21:171–174. https://doi.org/10.1002/ffj.1557

    Article  Google Scholar 

  81. Mastelic J, Jerkovic I, Mesic M (2006) Volatile constituents from flowers, leaves, bark and wood of Prunus mahaleb L. Flavour Frag J 21:306–313

    Article  Google Scholar 

  82. Salvatore MM, Giambra S, Naviglio D, DellaGreca M, Salvatore F, Burruano S, Andolfi A (2018) Fatty acids produced by Neofusicoccum vitifusiforme and N. parvum, fungi associated with grapevine Botryosphaeria dieback. Agric 8:189. https://doi.org/10.3390/agriculture8120189

  83. Nadaf M, Halimi M, Mortazavi M (2012) Identification of nonpolar chemical composition Spartium junceum flower growing in Iran by GC-MS. Middle-East J Sci Res 11:221–224

    Google Scholar 

  84. Valim MF, Rouseff RL, Lin J (2003) Gas chromatographic− olfactometric characterization of aroma compounds in two types of cashew apple nectar. J Agric Food Chem 51:1010–1015. https://doi.org/10.1021/jf025738+

    Article  Google Scholar 

  85. Kobaisy M, Tellez MR, Dayan FE, Duke SO (2002) Phytotoxicity and volatile constituents from leaves of Callicarpa japonica. Thunb Phytochem 61:37–40

    Article  Google Scholar 

  86. Jeribi C, Karoui IJ, Benhassine D, Abderrabba M (2016) Chemical composition of Cardopatium corymbosum leaves essential oil. J Essen Oil-Bear Plants 19:1471–1477. https://doi.org/10.1080/0972060X.2016.1224685

    Article  Google Scholar 

  87. Tellez MR, Canel C, Rimando AM, Duke SO (1999) Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L. Phytochem 52:1035–1040. https://doi.org/10.1016/S0031-9422(99)00308-8

    Article  Google Scholar 

  88. De Morais SR, Oliveira TLS, Bara MTF, Conceicao ECD, Rezende MH, Ferri PH, Paula JRD (2012) Chemical constituents of essential oil from Lippiasidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. Int J Anal Chem. https://doi.org/10.1155/2012/363919

  89. Kim KR, Kim H (2000) Gas chromatographic profiling and screening for phenols as isobutoxycarbonyl derivatives in aqueous samples. J Chromatogr A 866:87–96. https://doi.org/10.1016/S0021-9673(99)01068-7

    Article  Google Scholar 

  90. Balogun OS, Ajayi OS, Adeleke AJ (2017) Hexahydrofarnesyl acetone-rich extractives from Hildegardia barteri. J. Herbs Spices Med Plants 23:393–400. https://doi.org/10.1080/10496475.2017.1350614

    Article  Google Scholar 

  91. Aminkhah M, Asgarpanah J (2017) GC-MS Analysis of the essential oil from Artemisia aucheri Boiss. Fruits. J Chil Chem Soc 62:3581–3582

    Article  Google Scholar 

  92. Kandpal V, Joshi PK, Joshi N (2016) GC-MS analysis of seed essential oil of Chenopodiumambrosioides L. collected from Himalayan region. J Essen Oil-Bear Plants 19:258–261. https://doi.org/10.1080/0972060X.2015.1113891

    Article  Google Scholar 

  93. Baharum SN, Bunawan H, Ghani MAA, Mustapha WAW, Noor NM (2010) Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography-time of-flight mass spectrometry (GC-TOF MS). Mol 15:7006–7015. https://doi.org/10.3390/molecules15107006

    Article  Google Scholar 

  94. Gerasimenko VA, Kirilenko AV, Nabivach VM (1981) Capillary gas chromatography of aromatic compounds found in coal tar fractions. J Chromatogr A 208:9–16. https://doi.org/10.1016/S0021-9673(00)87953-4

    Article  Google Scholar 

  95. Mazimba O, Masesane IB, Majinda RR, Muzila A (2012) GC-MS analysis and antimicrobial activities of the non-polar extracts of Mundulea sericea. South Afr J Chem 65:50–52

    Google Scholar 

  96. El-Sayed AM, Heppelthwaite VJ, Manning LM, Gibb AR, Suckling DM (2005) Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. J Agric Food Chem 53:953–958

    Article  Google Scholar 

  97. Sotomayor JA, Martínez RM, García AJ, Jordán MJ (2004) Thymus zygis subsp. gracilis: watering level effect on phytomass production and essential oil quality. J Agric Food Chem 52:5418–5424

    Article  Google Scholar 

  98. Vichi S, Pizzale L, Conte LS, Buxaderas S, López-Tamames E (2003) Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of northern Italy. J Agric Food Chem 51:6572–6577

    Article  Google Scholar 

  99. Mondello L, Dugo P, Basile A, Dugo G, Bartle KD (1995) Interactive use of linear retention indices, on polar and apolar columns, with a MS-library for reliable identification of complex mixtures. J Microcolumn 7:581–591

    Article  Google Scholar 

  100. King MF, Matthews MA, Rule DC, Field RA (1995) Effect of beef packaging method on volatile compounds developed by oven roasting or microwave cooking. J Agric Food Chem 43:773–778

    Article  Google Scholar 

  101. Ramsey JD, Lee TD, Osselton MD, Moffat AC (1980) Gas-liquid chromatographic retention indices of 296 non-drug substances on SE-30 or OV-1 likely to be encountered in toxicological analyses. J Chromatogr A 184:185–206

    Article  Google Scholar 

  102. Sunil Kumar KN, Rajalekshmi M, Sangeetha B, Ravishankar B, Muralidhar R, Yashovarma B (2013) Chemical Fingerprint of Leaves of Cinnamomum sulphuratum Nees Growing in Kodagu, Karnataka. J Pharmacog Phytochem 2:164–169

    Google Scholar 

  103. Baruah A, Nath SC, Leclercq PA (1999) Leaf and stem bark oils of Cinnamomum sulphuratum Nees from Northeast India. J Essent Oil Res 11:194–196. https://doi.org/10.1080/10412905.1999.9701108

    Article  Google Scholar 

  104. Schmidt Co E, Kitzing K, Schloss Alten H, Wallerstein D (2006a) Composition and antioxidant activities of the essential oil of cinnamon (Cinnamomum zeylanicum Blume) leaves from Sri Lanka. J Essent Oil-Bear Plants 9:170–182. https://doi.org/10.1080/0972060X.2006.10643490

  105. Boniface Y, Philippe S, Lima H, Pierre N, Alain A, Fatiou T, Dominique S (2012) Chemical composition and antimicrobial activities of Cinnamomum perrottetii dry leaves essential oil against food-borne pathogens and adulterated microorganisms. Int Res J Biol Sci 1:18–25

    Google Scholar 

  106. Unlu M, Emel E, Gulhan VU, Zeytinoglu SH (2010) Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food and chemical toxicology: an international journal published for the Brit Indus Biol Res Asso 48:3274–3280. https://doi.org/10.1016/j.fct.2010.09.001

    Article  Google Scholar 

  107. Patel K, Ali S, Sotheeswaran S, Dufour JP (2007) Composition of the leaf essential oil of Cinnamomum verum (Lauraceae) from Fiji Islands. J Essent Oil Bear Plants 10:374–377. https://doi.org/10.1080/0972060X.2007.10643569

    Article  Google Scholar 

  108. Chakraborty A, Sankaran V, Ramar M, Chellappan DR (2015) Chemical analysis of leaf essential oil of Cinnamomum verum from Palni hills, Tamil Nadu. J Chem Pharm Sci 3:10

    Google Scholar 

  109. Monteiro IN, dos Santos MO, Costa-Junior LM, da Silva LA, de Aguiar AEH, Maia JGS, Filho VEM (2017) Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl. on Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 238:54–57. https://doi.org/10.1016/j.vetpar.2017.03.016

    Article  Google Scholar 

  110. Chinh HV, Luong NX, Thin DB, Dai DN, Hoi TM, Ogunwande IA (2017) Essential Oils Leaf of Cinnamomum glaucescens and Cinnamomum verum from Vietnam. Amer J Pl Sci 08(11):2712–2721. https://doi.org/10.4236/ajps.2017.811182

    Article  Google Scholar 

  111. Li Y, Dexin K, Lin XM, Xie ZH, Bai M, Huang S, Nian H, Hong W (2016) Quality evaluation for essential oils of Cinnamomum verum leaves at different growth stages based on GC-MS, FTIR and microscopy. Food Anal Methods 9:202–212. https://doi.org/10.1007/s12161-015-0187-6

    Article  Google Scholar 

  112. Hema R, Kumaravel S, Martina SD (2010) Chromatograph interfaced to a mass spectrometer analysis of Cinnamomum verum. Nat Sci 8:152–155

    Google Scholar 

  113. Subki SY, Jamal JA, Husain K, Manshoor N (2013) Characterization of leaf essential oils of three Cinnamomum species from Malaysia by gas chromatography and multivariate data analysis. Pharmacogn J 5:22–29. https://doi.org/10.1016/j.phcgj.2012.12.004

    Article  Google Scholar 

  114. Sriramavaratharajan V, Murugan R (2018) Chemical profile of leaf essential oil of Cinnamomum walaiwarense and comparison of its antioxidant and hypoglycemic activities with the major constituent benzyl benzoate. Nat Prod Commun 13:779–782. https://doi.org/10.1177/1934578X1801300633

    Article  Google Scholar 

  115. Chen HP, Yang K, You CX, Chun Lei N, Sun R, Geng Zhu M, Ping C, Qian D, Shu D, Zhi (2014) Chemical constituents and insecticidal activities of the essential oil of Cinnamomum camphora leaves against Lasioderma serricorne. J Chem 5(1):1-5 https://doi.org/10.1155/2014/963729

  116. Guo S, Geng Z, Zhang W, Liang J, Wang C, Deng Z, Du S (2016) The chemical composition of essential oils from Cinnamomum camphora and their insecticidal activity against the stored product pests. Int J Mol Sci 17(11):1836. https://doi.org/10.3390/ijms17111836

    Article  Google Scholar 

  117. Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, Yue Y (2016) GC x GC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora (Presl.) and their insecticidal and repellent activities. Molecules 21:423. https://doi.org/10.3390/molecules21040423

    Article  Google Scholar 

  118. Yu H, Ren X, Liu Y, Xie Y, Guo Y, Cheng Y, Qian H, Yao W (2019) Extraction of Cinnamomum camphora Chvar. Borneol essential oil using neutral cellulase assisted-steam distillation: optimization of extraction, and analysis of chemical constituents. Ind Crop Prod 141:111794

    Article  Google Scholar 

  119. Xu Y, Qin J, Wang P, Li Q, Yu S, Zhang Y, Wang Y (2019) Chemical composition and larvicidal activities of essential oil of Cinnamomum camphora (L.) leaf against Anopheles stephensi. J Braz Soc Trop Med 53(1):1–5. https://doi.org/10.1590/0037-8682-0211-2019

    Article  Google Scholar 

  120. Chen J, Tang C, Zhang R, Ye S, Zhao Z, Huang Y, Xu X, Lan W, Yang D (2020) Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J Ethnopharmacol 253:112–652. https://doi.org/10.1016/j.jep.2020.112652

    Article  Google Scholar 

  121. Baruah A, SnC N (2006) Leaf essential oils of Cinnamomum glanduliferum (Wall) Meissn and Cinnamomum glaucescens (Nees) Meissn. J Essent Oil Res 18:200–202. https://doi.org/10.1080/10412905.2006.9699065

    Article  Google Scholar 

  122. Singh C, Singh S, Pande C, Tewari G, Kharkwal GC (2014) Chemical composition of the leaves essential oil from Cinnamomum glanduliferum (Wall) Meissn from Uttarakhand, India. J Essent Oil Bear Pl 17:927–930. https://doi.org/10.1080/0972060X.2014.935027

    Article  Google Scholar 

  123. Azab SS, Jaleel GAA, Eldahshan OA (2017) Anti-inflammatory and gastroprotective potential of leaf essential oil of Cinnamomum glanduliferum in ethanol-induced rat experimental gastritis. Pharm Biol 55(1):1654–1661. https://doi.org/10.1080/13880209.2017.1314512

    Article  Google Scholar 

  124. Chalchat JC, Garry RP, Muhayimana A (1995) Essential oil of Tagetes from Rwanda and France: chemical composition according to harvesting, location, growth stage and part of plant extracted. J Essent Oil Res 34:375–386. https://doi.org/10.1080/10412905.1995.9698544

    Article  Google Scholar 

  125. Kaul PN, Bhattacharya AK, Rajeswara Rao BR (1996) Seasonal variation in the composition of the essential oil of Cinnamon (Cinnamomum zeylanicum Blume) leaves. Indian Perfum 40:36–38

    Google Scholar 

  126. Inouye S, Takizawa T, Yamaguchi H (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob Chemother 47:565–573. https://doi.org/10.1093/jac/47.5.565

    Article  Google Scholar 

  127. Rameshkumar KB, George V, Shiburaj S (2007) Chemical constituents and antibacterial activity of the leaf oil of Cinnamomum chemungianum Mohan et Henry. J Essen Oil Res 19:98–100. https://doi.org/10.1080/10412905.2007.9699238

    Article  Google Scholar 

  128. El-Baroty GS, El-Baky HHA, Farag RS, Saleh MA (2010) Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr J Biochem Res 4:167–174

    Google Scholar 

  129. Katiyar (2010) Cinnamomum zeylanicum and Cinnamomum cassia on food spoilage bacteria and water borne bacteria. Annals Biol Res 1:200–209

    Google Scholar 

  130. Mehmet U, Ergene E, Gulhan UV, Zeytinoglu HS, Nilufer V (2010) Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem Toxicol 48:3274–3280. https://doi.org/10.1016/j.fct.2010.09.001

    Article  Google Scholar 

  131. Goni P, Lopez P, Sanchez C, Gomez-Lus R, Becerril R, Nerin C (2009) Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem 116:982–989. https://doi.org/10.1016/j.foodchem.2009.03.058

    Article  Google Scholar 

  132. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462. https://doi.org/10.1046/j.1365-2672.2001.01428.x

    Article  Google Scholar 

  133. Friedman M, Henika PR, Levin CE, Mandrell RE (2004) Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J Agric Food Chem 52:6042–6048. https://doi.org/10.1021/jf0495340

    Article  Google Scholar 

  134. Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6:1–8. https://doi.org/10.1186/1472-6882-6-39

    Article  Google Scholar 

  135. Shafreen B, Mohmed R, Selvaraj C, Singh SK, Pandian SK (2014) In silico and in vitro studies of cinnamaldehyde and their derivatives against LuxS in Streptococcus pyogenes: Effects on biofilm and virulence genes. J Mol Recog 27:106–116. https://doi.org/10.1002/jmr.2339

    Article  Google Scholar 

  136. Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 70:5750–5755. https://doi.org/10.1128/AEM.70.10.5750-5755.2004

    Article  Google Scholar 

  137. Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 69:1046–1055. https://doi.org/10.4315/0362-028X-69.5.1046

    Article  Google Scholar 

  138. Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002

    Article  Google Scholar 

  139. Bouhdid S, Abrini J, Amensour M, Zhiri A, Espuny MJ, Manresa A (2010) Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J Appl Microbiol 109:1139–1149. https://doi.org/10.1111/j.1365-2672.2010.04740.x

    Article  Google Scholar 

  140. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, Lim E, Lai KS (2019) Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS ONE 14:e0214326. https://doi.org/10.1371/journal.pone.0214326

    Article  Google Scholar 

  141. Narayanankutty A, Kunnath K, Alfarhan A, Rajagopal R, Ramesh V (2021) Chemical composition of Cinnamomum verum leaf and flower essential oils and analysis of their antibacterial, insecticidal, and larvicidal properties. Mol 26(20):6303. https://doi.org/10.3390/molecules26206303

    Article  Google Scholar 

  142. Marasini BP, Baral P, Aryal P, Ghimire KR, Neupane S, Dahal N, Singh A, Ghimire L, Shrestha K (2015) Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. Bio Med Res D 265425:6. https://doi.org/10.1155/2015/265425

    Article  Google Scholar 

  143. Brodowska K, Sykula A, Garribba E, Chruscinska LE, Sojka M (2016) Naringenin Schiff base: antioxidant activity, acid-base profile, and interactions with DNA. Transition Met Chem 41:179–189. https://doi.org/10.1007/s11243-015-0010-7

    Article  Google Scholar 

  144. Miguel MG (2010) Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr J 25:291–312. https://doi.org/10.1002/ffj.1961

    Article  Google Scholar 

  145. Palozza P, Krinsky NI (1992) Antioxidant activity of carotenoids in vivo and in vitro: An overview. Meth Enzymol 213:403–420. https://doi.org/10.1016/0076-6879(92)13142-K

    Article  Google Scholar 

  146. Farag RS, Daw ZY, Hewedi FM, El- Baroty GSA (1989) Antimicrobial activity of some Egyptian spice essential oils. J Food Prot 52:665–667. https://doi.org/10.4315/0362-028X-52.9.665

    Article  Google Scholar 

  147. Evans RCA, Miller NJ, Paganga G (1996) Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20:933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  Google Scholar 

  148. Wang W, Wu N, Zu YG, Fu YJ (2008) Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem 108:1019–1022. https://doi.org/10.1016/j.foodchem.2007.11.046

    Article  Google Scholar 

  149. Prakash D, Upadhyay G, Pushpangadan P, Gupta C (2011) Antioxidant and free radical scavenging activities of some fruits. J Complement Int Med 8:1–16. https://doi.org/10.2202/1553-3840.1513

  150. Tamil Selvi M, Thirugnanasampandan R, Sundarambal S (2015) Antioxidant and cytotoxic activities of essential oil of Ocimum canum Sims. from India. J Saudi Chem Soc 19:97–100. https://doi.org/10.1016/j.jscs.2011.12.026

    Article  Google Scholar 

  151. Schmidt Co E, Kitzing K, Schloss Alten H, Wallerstein D (2006b) Composition and antioxidant activities of the essential oil of cinnamon (Cinnamomum zeylanicum Blume) leaves from Sri Lanka. J Essent Oil-Bear Plants 9:170–182. https://doi.org/10.1080/0972060X.2006.10643490

    Article  Google Scholar 

  152. Jayaprakasha GK, Rao LJM (2011) Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit Rev Food Sci Nutr 51:547–562. https://doi.org/10.1080/10408391003699550

    Article  Google Scholar 

  153. Amma KPP, Rani MP, Sasidharan I, Sreekumar MM (2012) Comparative chemical composition and in vitro antioxidant activities of essential oil isolated from the leaves of Cinnamomum tamala and Pimenta dioica. Nat Prod Res 27:290–294

    Article  Google Scholar 

  154. Abdelwahab SI, Mariod AA, Tahaa MME, Zamanc FQ, Abdelmageed AHA, Khamis S, Sivasothyen Y, Awing K (2017) Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm. (Lauraceae). Arab J Chem 10:131–135

    Article  Google Scholar 

  155. Gulcin I (2011) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391. https://doi.org/10.1007/s00204-011-0774-2

    Article  Google Scholar 

  156. Hidalgo ME, De la Rosa C, Carrasco H, Cardona W, Gallardo C, Espinoza L (2009) Antioxidant capacity of eugenol derivatives. Quimica Nova 32:1467–1470. https://doi.org/10.1590/S0100-40422009000600020

    Article  Google Scholar 

  157. Govindarajan M (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (willd.) Hook. F. Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med 3:874–877

    Article  Google Scholar 

  158. Govindarajan M (2011) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera : Culicidae). Asian Pac J Trop Med 4:106–111. https://doi.org/10.1016/S1995-7645(11)60047-3

    Article  Google Scholar 

  159. Liu C, Liu QY, Zhou L, Liu ZL (2015) Larvicidal activity of essential oil derived from Illicium henryi Diels (Illiciaceae) leaf. Trop J Pharm Res 14(1):111–116. https://doi.org/10.4314/tjpr.v14i1.16

    Article  Google Scholar 

  160. Samarasekera R, Kosmulalage SK, Indira S, Weerasinghe (2005) Mosquitocidal activity of leaf and bark essential oils of Ceylon Cinnamomum zeylanicum. J Essen Oil Res 17:301–303. https://doi.org/10.1080/10412905.2005.9698909

    Article  Google Scholar 

  161. Pandiyan G, Mathew N, Munusamy S (2019) Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicol Environ Saf 174:549–556. https://doi.org/10.1016/j.ecoenv.2019.03.019

    Article  Google Scholar 

  162. Barbosa JDF, Silva VB, Alves PB, Gumina G, Santos R, Sousa DP, Socrates CH (2012) Structure–activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci:124–142. https://doi.org/10.1002/ps.3331

  163. Thomas A, Mazigo HD, Manjurano A, Morona D, Kweka EJ (2017) Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae. Parasites Vectors 10:411. https://doi.org/10.1186/s13071-017-2355-6

    Article  Google Scholar 

  164. Dias T, Brito I, Moujir L, Paiz N, Darias J, Cueto M (2005) Cytotoxic Sesquiterpenes from Aplysia dactylomela. J Nat Prod 68:1677–1679. https://doi.org/10.1021/np050240y

    Article  Google Scholar 

  165. Barnard DR (1999) Repellency of essential oils to mosquitoes (Diptera: Culicidae). J Med entomol 36:625–629

    Article  Google Scholar 

  166. Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395–4400. https://doi.org/10.1021/jf0497152

    Article  Google Scholar 

  167. Traboulsi AF, El-Haj S, Tueni M, Taoubi K, Nader NB, Mrad A (2005) Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiensmolestus (Diptera: Culicidae). Pest Manag Sci 61:597–604. https://doi.org/10.1002/ps.1017

    Article  Google Scholar 

  168. Tawatsin A, Wratten SD, Scott RR, Thavara U, Techandamrongsin Y (2001) Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 26:76–82

    Google Scholar 

  169. Tawatsin A, Asavadachanukorn P, Thavara U, Wongsinkongman P, Bansidhi J, Boonruad T (2006) Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J Trop Med Public Health 37:915–931

    Google Scholar 

  170. Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478-90. https://doi.org/10.1007/s00436-006-0184-1

  171. Pushpanathan T, Jebanesan A, Govindarajan M (2008) The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 102:1289–1291. https://doi.org/10.1007/s00436-008-0907-6

    Article  Google Scholar 

  172. Intirach J, Junkum A, Tuetun B, Choochote W, Chaithong U, Jitpakdi A, Pitasawat B (2012) Chemical constituents and combined larvicidal effects of selected essential oils against Anopheles cracens (Diptera : Culicidae). J Chem 2012:591616. https://doi.org/10.1155/2012/591616

  173. Sarma R, Adhikari K, Mahanta S, Khanikor B (2019) Combinations of plant essential oil based Terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera : Culicidae). Sci Rep 9:9471. https://doi.org/10.1038/s41598-019-45908-

    Article  Google Scholar 

  174. Santos SRL, Melo MA, Valença A, Santos RLC, SCH SDPDC (2011) Structure – activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 84(150):153. https://doi.org/10.1016/j.chemosphere.2011.02.018

    Article  Google Scholar 

  175. Rey D, Cuany A, Pautou MP, Meyran JC (1999) Differential sensitivity of mosquito texa to vegetable tannins. J Chem Ecol 25:537–548. https://doi.org/10.1023/A:1020953804114

    Article  Google Scholar 

  176. David JP, Rey D, Pauntou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18. https://doi.org/10.1006/jipa.1999.4886

    Article  Google Scholar 

  177. Jantan I, Yalvema MF, Ahmad NW, Jamal JA (2005) Insecticidal activities of the leaf oils of eight Cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm Bio 43:526–532. https://doi.org/10.1080/13880200500220771

    Article  Google Scholar 

Download references

Funding

We thank the National Medicinal Plant Board, New Delhi for providing financial support through a major research project (F.No. Z. 18017/187/CSS/ R&D/TN-01/2023-24- NMPB-IV A).

Author information

Authors and Affiliations

Authors

Contributions

Saranya Surendran; execution of laboratory studies, preparation of the manuscript; Smija, K.P: execution and assistance of laboratory studies; Raju Ramasubbu: planning of research problem, work designed, lead, review and editing of the manuscript, Azhagu Madhavan Sivalingam and Arjun Pandian reviewed, edited revised article.

Corresponding author

Correspondence to Raju Ramasubbu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 728 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendran, S., KP, S., Pandian, A. et al. Analysis of chemical composition and biological efficiency of leaf essential oils isolated from seven species of Cinnamomum of the Western Ghats, India. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05653-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05653-8

Keywords

Navigation