Skip to main content
Log in

Research progress on high-value-added application of lignocellulosic biomass based on deep eutectic solvent pretreatment

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

As an emerging green solvent, deep eutectic solvent (DES) was widely used in the pretreatment and high-value-added transformation of lignocellulose due to its unique physical, chemical, and biological advantages. In this paper, based on the introduction of the structural composition and physicochemical properties of DES, the applications of DES in lignocellulose (cellulose, hemicellulose, and lignin) pretreatment, preparation of nanofunctional materials, and synthesis of platform compounds was reviewed in detail. At the same time, the existing problems in the development and utilization of DESs were analyzed, and the key directions for the future research of DESs were provided, in order to provide new ideas and reference for the green sustainable development and utilization of lignocellulosic biomass.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Holechek J, Geli H, Sawalhah M, Valdez R (2022) A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14:1–22

    Article  Google Scholar 

  2. Liu Y, Hu C, Wu J, Islam A, Ouyang X (2020) Carboxy cellulose as cathode interfacial layer for efficient organic solar cells. Paper and Biomaterials 5:14–21

    Google Scholar 

  3. Przemieniecki S, Kosewska A, Kosewska O, Purwin C, Lipiński K, Ciesielski S (2022) Polyethylene, polystyrene and lignocellulose wastes as mealworm (tenebrio molitor l.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. Sci Total Environ 832:154758

    Article  Google Scholar 

  4. Tian G, Li Y (2022) Lignocellulose mulch increases the economic benefit of Chinese chestnut by suppressing weed and ameliorating soil properties. Sci Hortic 291:110576

    Article  Google Scholar 

  5. Tucki K, Orynycz O, Wasiak A, Mruk R (2020) Estimation of carbon dioxide emissions from a diesel engine powered by lignocellulose derived fuel for better management of fuel production. Energies 13:561

    Article  Google Scholar 

  6. Veluchamy C, Kalamdhad A (2019) Effect of total solid content of lignocellulose pulp and paper mill sludge on methane production and modeling. J Environ Eng 146:4019121–4019127

    Article  Google Scholar 

  7. Haris M, Hamid Y, Wang L et al (2022) Cd diminution through microbial mediated degraded lignocellulose maize straw: batch adsorption and bioavailability trails. J Environ Manage 302:114042

    Article  Google Scholar 

  8. Wang J, Cui H, Wang J, Li Z, Yi W (2021) Kinetic insight into glucose conversion to 5-hydroxymethyl furfural and levulinic acid in LiCl3 H2O without additional catalyst. Chem Eng J 415:128922

    Article  Google Scholar 

  9. Audemar M, Wang Y, Zhao D et al (2020) Synthesis of furfuryl alcohol from furfural: a comparison between batch and continuous flow reactors. Energies 13:1002

    Article  Google Scholar 

  10. Sterberg M, Sipponen M, Mattos BD, Rojas OJ (2020) Spherical lignin particles: a review on their sustainability and applications. Green Chem 22(9):2712–2733

    Article  Google Scholar 

  11. Sriariyanun M, Gundupalli MP, Phakeenuya V, Phusamtisampa T, Cheng Y, Venkatachalam P (2023) Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms. J Appl Sci Eng 27:1985–2005

    Google Scholar 

  12. Kumar R, Strezov V, Weldekidan H, He J et al (2020) Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev 123:109763

    Article  Google Scholar 

  13. Abushammala H, Jia M (2020) A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium ionic liquids. Polymers 12:195

    Article  Google Scholar 

  14. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 19:2010

    Article  Google Scholar 

  15. Francisco M, Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157

    Article  Google Scholar 

  16. Chen Y, Mu T (2019) Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy Environ 4:95–115

    Article  Google Scholar 

  17. Osch D, Dietz C, Warrag S, Kroon MC (2020) The curious case of hydrophobic deep eutectic solvents: a story on the discovery, design, and applications. ACS Sustain Chem Eng 8:10591–10612

    Google Scholar 

  18. Sander A, Petračić A, Parlov Vuković J, Husinec L (2020) From coffee to biodiesel-deep eutectic solvents for feedstock and biodiesel purification. Separations 7:22

    Article  Google Scholar 

  19. Ren H, Chen C, Wang Q, Zhao D, Guo S (2016) The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources 11:5435–5451

    Article  Google Scholar 

  20. Gomes GR, Mattioli RR, Pastre JC (2022) Amino acid-based deep eutectic solvents in biomass processing-recent advances. J Braz Chem Soc 33:815–823

    Google Scholar 

  21. Zhang M, Zhang X, Liu Y, Wu K, Zhu Y, Lu H, Liang B (2021) Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ Sci Pollut Res 28:35537–35563

    Article  Google Scholar 

  22. Smith E, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  Google Scholar 

  23. Tan YT, Chua ASM, Ngoh GC (2020) Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products–a review. Bioresour Technol 297:122522

    Article  Google Scholar 

  24. Loow YL, New EK, Yang GH et al (2017) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24:3591–3618

    Article  Google Scholar 

  25. Nawaz A, Chaudhary R, Haq IU et al (2023) Delignification of halophyte Atriplex crassifolia by green recyclable deep eutectic solvents for enhanced production of biogas. Fermentation 9(3):314

    Article  Google Scholar 

  26. Wang S, Li H, Xiao LP, Song G (2020) Unraveling the structural transformation of wood lignin during deep eutectic solvent treatment. Front Energy Res 8:48

    Article  Google Scholar 

  27. Xu H, Peng J, Kong Y et al (2020) Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. Bioresour Technol 310:123416

    Article  Google Scholar 

  28. New EK, Wu TY et al (2021) A utilization of choline chloride-based deep eutectic solvent integrated with alkaline earth metal hexahydrate in the pretreatment of oil palm fronds. Ind Eng Chem Res 60:2011–2026

    Article  Google Scholar 

  29. Vigier KDO, Chatel G, Jérôme F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7:1250–1260

    Article  Google Scholar 

  30. Espino M, de los Ángeles Fernández M, Gomez FJ, Silva MF (2016) Natural designer solvents for greening analytical chemistry. TrAC trend Anal Chem 76:126–136

    Article  Google Scholar 

  31. Tran KT, Le LT, Phan AL et al (2020) New deep eutectic solvents based on ethylene glycol-LiTFSI and their application as an electrolyte in electrochemical double layer capacitor (EDLC). J Mol Liq 320:114495

    Article  Google Scholar 

  32. Tian D, Guo Y, Hu J et al (2020) Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Biol Macromol 142:288–297

    Article  Google Scholar 

  33. Hong S, Shen XJ, Pang B et al (2020) In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green Chem 22:1851–1858

    Article  Google Scholar 

  34. Oh Y, Park S, Jung D, Oh KK, Lee SH (2020) Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int J Biol Macromol 165:187–197

    Article  Google Scholar 

  35. Hong S, Shen XJ, Xue Z, Sun Z, Yuan TQ (2020) Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation. Green Chem 22:7219–7232

    Article  Google Scholar 

  36. Liang X, Zhu Y, Qi B, Li S, Luo J, Wan Y (2021) Structure-property-performance relationships of lactic acid-based deep eutectic solvents with different hydrogen bond acceptors for corn stover pretreatment. Bioresour Technol 336:125312

    Article  Google Scholar 

  37. Morán-Aguilar MG, Costa-Trigo I, Ramírez-Pérez AM et al (2022) Development of sustainable biorefinery processes applying deep eutectic solvents to agrofood wastes. Energies 15(11):4101

    Article  Google Scholar 

  38. Zhang H, Lang J, Lan P, Yang H, Lu J, Wang Z (2020) Study on the dissolution mechanism of cellulose by ChCl-based deep eutectic solvents. Mater 13:278

    Article  Google Scholar 

  39. Zhong Y, Wu J, Kang H, Liu R (2022) Choline hydroxide based deep eutectic solvent for dissolving cellulose. Green Chem 24:2464–2475

    Article  Google Scholar 

  40. Sharma M, Mukesh C, Mondal D, Prasad K (2013) Dissolution of α-chitin in deep eutectic solvents. RSC Adv 3:18149–18155

    Article  Google Scholar 

  41. Morais ES, Lopes AM, Freire MG et al (2020) Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization. Molecules 25:3652

    Article  Google Scholar 

  42. Ren H, Gong R, Li M, Liu Y et al (2020) Natural deep eutectic solvents efficient catalytic conversion of cellulose to total reducing sugars (TRS). J Mol Liq 312:113282

    Article  Google Scholar 

  43. Ling Z, Guo Z, Huang C, Yao L, Xu F (2020) Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility. Bioresour Technol 305:123025

    Article  Google Scholar 

  44. Sun L, Han J, Tang C et al (2022) Choline chloride-based deep eutectic solvent system as a pretreatment for microcrystalline cellulose. Cellulose 29(15):8133–8150

    Article  Google Scholar 

  45. Hassan ESR, Mutelet F (2022) Evaluation of miscanthus pretreatment effect by Choline chloride based Deep Eutectic solvents on bioethanol production. Bioresour Technol 345:126460

    Article  Google Scholar 

  46. Guo Y, Xu L, Shen F et al (2022) Insights into lignocellulosic waste fractionation for lignin nanospheres fabrication using acidic/alkaline deep eutectic solvents. Chemosphere 286:131798

    Article  Google Scholar 

  47. Tian D, Shen F, Hu J et al (2022) Complete conversion of lignocellulosic biomass into three high-value nanomaterials through a versatile integrated technical platform. Chem Eng J 428:131373

    Article  Google Scholar 

  48. Xu B, Wang N, Wang X, Lang J, Zhang H (2022) Experimental study on the separation of bagasse lignin and cellulose by using deep eutectic solvent based on alkaline pretreatment. Biomass Convers Bior:1–11

  49. Zhao Z, Chen X, Ali MF et al (2018) Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour Technol 263:325–333

    Article  Google Scholar 

  50. Duan CJ, Han X, Chang YH et al (2023) A novel ternary deep eutectic solvent pretreatment for the efficient separation and conversion of high-quality gutta-percha, value-added lignin and monosaccharide from Eucommia ulmoides seed shells. Bioresour Technol 370:128570

    Article  Google Scholar 

  51. Gong L, Wu X, Wang Y et al (2022) A novel deep eutectic solvent–mediated Fenton-like system for pretreatment of water hyacinth and biobutanol production. Biomass Convers Bior:1–11

  52. Hou XD, Li AL, Lin P et al (2018) Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour Technol 249:261–267

    Article  Google Scholar 

  53. Tan YT, Ngoh GC, Chua ASM (2019) Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour Technol 281:359–366

    Article  Google Scholar 

  54. Guo Z, Zhang Q, You T et al (2019) Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chem 21:3099–3108

    Article  Google Scholar 

  55. Yu H, Xue Z, Lan X, Liu Q, Shi R, Mu T (2020) Highly efficient dissolution of xylan in ionic liquid-based deep eutectic solvents. Cellulose 27:6175–6188

    Article  Google Scholar 

  56. Yang J, Wang Y, Zhang W, Li M, Peng F, Bian J (2021) Alkaline deep eutectic solvents as novel and effective pretreatment media for hemicellulose dissociation and enzymatic hydrolysis enhancement. Int J Biol Macromol 193:1610–1616

    Article  Google Scholar 

  57. Wang Y, Zhang WJ, Yang JY et al (2022) Efficient fractionation of woody biomass hemicelluloses using cholinium amino acids-based deep eutectic solvents and their aqueous mixtures. Bioresour Technol 354:127139

    Article  Google Scholar 

  58. Ling Z, Tang W, Su Y et al (2021) Promoting enzymatic hydrolysis of aggregated bamboo crystalline cellulose by fast microwave-assisted dicarboxylic acid deep eutectic solvents pretreatments. Bioresour Technol 333:125122

    Article  Google Scholar 

  59. D'Agostino C, Harris RC, Abbott AP et al (2011) Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1 H pulsed field gradient NMR spectroscopy. Phys Chem Chem Phys 13:21383–21391

    Article  Google Scholar 

  60. Okuofu SI, Gerrano AS, Singh S, Pillai S (2022) Deep eutectic solvent pretreatment of Bambara groundnut haulm for enhanced saccharification and bioethanol production. Biomass Convers Bior 12(8):3525–3533

    Article  Google Scholar 

  61. Kwon GJ, Cho SW, Bandi R et al (2023) Production of lignocellulose nanofibrils by conventional and microwave-assisted deep-eutectic-solvent pretreatments: mechanical, antioxidant, and UV-blocking properties. Cellulose 30(7):4277–4292

    Article  Google Scholar 

  62. Basak B, Patil S, Kumar R et al (2022) Integrated hydrothermal and deep eutectic solvent-mediated fractionation of lignocellulosic biocomponents for enhanced accessibility and efficient conversion in anaerobic digestion. Bioresour Technol 351:127034

    Article  Google Scholar 

  63. Wang R, Wang K, Zhou M, Xu J, Jiang J (2021) Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Bioresour Technol 328:124873

    Article  Google Scholar 

  64. Hong S, Shen XJ, Sun Z, Yuan TQ (2020) Insights into structural transformations of lignin toward high reactivity during choline chloride/formic acid deep eutectic solvents pretreatment. Front Energy Res 8:573198

    Article  Google Scholar 

  65. Torres P, Balcells M, Cequier E, Canela-Garayoa R (2020) Effect of four novel bio-based DES (deep eutectic solvents) on hardwood fractionation. Molecules 25(9):2157

    Article  Google Scholar 

  66. Majová V, Jablonský M, Lelovský M (2021) Delignification of unbleached pulp by ternary deep eutectic solvents. Green Process Synth 10:666–676

    Article  Google Scholar 

  67. Wang ZK, Hong S, Wen JL et al (2019) Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin. ACS Sustain Chem Eng 8:1050–1057

    Article  Google Scholar 

  68. Teng Z, Wang L, Huang B et al (2022) Synthesis of green deep eutectic solvents for pretreatment wheat straw: enhance the solubility of typical lignocellulose. Sustainability 14:657

    Article  Google Scholar 

  69. Xia Q, Liu Y, Meng J et al (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20:2711–2721

    Article  Google Scholar 

  70. Liu C, Li MC, Chen W et al (2020) Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement- sciencedirect. Carbohydr Polym 246:116548

    Article  Google Scholar 

  71. Mankar AR, Pandey A, Pant KK (2022) Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics. Bioresour Technol 345:126528

    Article  Google Scholar 

  72. Zhang X, Zhou Y, Xiong W, Wei W, Jiang W (2022) Co-production of xylose, lignin, and ethanol from eucalyptus through a choline chloride-formic acid pretreatment. Bioresour Technol 359:127502

    Article  Google Scholar 

  73. Alawad I, Ibrahim H (2022) Pretreatment of agricultural lignocellulosic biomass for fermentable sugar: opportunities, challenges, and future trends. Biomass Convers Bior:1–29

  74. Wang H, Chen T, Yao S, Tang Y (2022) Comparison of polyol-based deep eutectic solvents (DESs) on pretreatment of moso bamboo (Phyllostachys pubescens) for enzymatic hydrolysis. Ind Crop Prod 189:115767

    Article  Google Scholar 

  75. Xu G, Li H, Xing W, Gong L, Dong J, Ni Y (2020) Facilely reducing recalcitrance of lignocellulosic biomass by a newly developed ethylamine-based deep eutectic solvent for biobutanol fermentation. Biotechnol Biofuels 13(1):1–14

    Article  Google Scholar 

  76. Wang Z, Cheng F, Cai H et al (2021) Robust versatile nanocellulose/polyvinyl alcohol/carbon dot hydrogels for biomechanical sensing. Carbohydr Polym 259:117753

    Article  Google Scholar 

  77. Abd El-Lateef HM, Gouda M (2021) Novel nanocomposites of nickel and copper oxide nanoparticles embedded in a melamine framework containing cellulose nanocrystals: material features and corrosion protection applications. J Mol Liq 342:116960

    Article  Google Scholar 

  78. Spiliopoulos P, Spirk S, Pääkkönen T et al (2021) Visualizing degradation of cellulose nanofibers by acid hydrolysis. Biomacromolecules 22(4):1399–1405

    Article  Google Scholar 

  79. Li P, Lei H, Jian B et al (2022) Okara cellulose nanofibrils produced by pretreatment with sustainable deep eutectic solvent coupled with various mechanical treatments. Paper and Biomaterials 7(2):46–55

    Google Scholar 

  80. Liu S, Zhang Q, Gou S, Zhang L, Wang Z (2021) Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydr Polym 251:117018

    Article  Google Scholar 

  81. Luo T, Wang C, Ji X et al (2021) Innovative production of lignin nanoparticles using deep eutectic solvents for multifunctional nanocomposites. Int J Biol Macromol 183:781–789

    Article  Google Scholar 

  82. Yu W, Wang C, Yi Y et al (2019) Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers. Cellulose 26:3069–3082

    Article  Google Scholar 

  83. Zhang H, Shi Y, Li M et al (2022) Extraction of lignin from corncob residue via a deep eutectic solvent for the preparation of nanoparticles by self-assembly. Chem Eng Sci 256:117694

    Article  Google Scholar 

  84. Xie J, Xu J, Cheng Z, Zhu S, Wang B (2021) Phosphotungstic acid assisted with neutral deep eutectic solvent boost corn straw pretreatment for enzymatic saccharification and lignin extraction. Ind Crop Prod 172:114058

    Article  Google Scholar 

  85. Ma CY, Xu LH, Sun Q et al (2022) Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. Bioresour Technol 352:127065

    Article  Google Scholar 

  86. Gupta D, Kumar R, Pant KK (2020) Hydrotalcite supported bimetallic (Ni-Cu) catalyst: a smart choice for one-pot conversion of biomass-derived platform chemicals to hydrogenated biofuels. Fuel 277:118111

    Article  Google Scholar 

  87. Mankar AR, Pandey A, Modak A, Pant KK (2021) Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst. Renew Energy 177:643–651

    Article  Google Scholar 

  88. Ji Q, Tan CP, Yagoub AEA et al (2021) Effects of acidic deep eutectic solvent pretreatment on sugarcane bagasse for efficient 5-hydroxymethylfurfural production. Energ Technol 9:2100396

    Article  Google Scholar 

  89. Zhan H, Liu X, Han M, Zhang R (2022) Conversion of bio-carbohydrates to 5-hydroxymethylfurfural in three-component deep eutectic solvent. RSC Adv 12:14957–14963

    Article  Google Scholar 

  90. Arora S, Gupta N, Singh V (2021) pH-Controlled Efficient Conversion of Hemicellulose to Furfural Using Choline-Based Deep Eutectic Solvents as Catalysts. ChemSusChem 14:3953–3958

    Article  Google Scholar 

  91. Wu C, Wang C, Zhang A, Chen K, Cao F, Ouyang P (2022) Preparation of 3-aceta mido-5-acetylfuran from N-acetylglucosamine and chitin using biobased deep eutectic solvents as catalysts. React Chem Eng 7:1742–1749

    Article  Google Scholar 

  92. Abtahi B, Tavakol H (2021) CuI-catalyzed, one-pot synthesis of 3-aminobenzofurans in deep eutectic solvents. Appl Organomet Chem 35:e6433

    Article  Google Scholar 

  93. Yoon LW, Rafi IS, Ngoh GC (2022) Feasibility of eliminating washing step in bioethanol production using deep eutectic solvent pretreated lignocellulosic substrate. Chem Eng Res Des 179:257–264

    Article  Google Scholar 

  94. Amesho KT, Chen SC, Wu TY, Ponnusamy VK, Lin YC (2023) Green synthesis of 5-hydroxymethylfurfural from biomass-derived carbohydrates using deep eutectic solvents as environmentally benign catalyst. Environ Technol Innov 29:102982

    Article  Google Scholar 

  95. Amesho KT, Lin YC, Mohan SV, Halder S, Ponnusamy VK, Jhang SR (2023) Deep eutectic solvents in the transformation of biomass into biofuels and fine chemicals: a review. Environ Chem Lett 21(1):183-230

    Article  Google Scholar 

Download references

Funding

This study was financially supported/sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01B02) and Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, Kashi University of China(KSUGCZX202004).

Author information

Authors and Affiliations

Authors

Contributions

In this study, JC and XZ wrote this manuscript; JX and YL searched and organized literature; and LW and NL format checked and edited. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xianghao Zha.

Ethics declarations

Ethical approval

Not applicable. The manuscript does not contain data collected from humans or animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Xue, J., Li, Y. et al. Research progress on high-value-added application of lignocellulosic biomass based on deep eutectic solvent pretreatment. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04972-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04972-6

Keywords

Navigation