Skip to main content

Advertisement

Log in

Eco-friendly synthesis of ZnO nanomaterial from green tea extract: photocatalytic, antibacterial and antioxidant potential

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, zinc oxide (ZnO) nanomaterial was synthesized from green tea (Camellia sinensis) aqueous extract as an eco-friendly alternative route. Nanostructured ZnO was characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR), which confirmed the formation of ZnO hexagonal crystalline structure. The size and morphology of ZnO were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS), which revealed spherical morphology with a particle size of around 215 nm. The results suggest that the chelation and stabilization properties of the polyphenols present in the green tea extract play a role in forming the ZnO nanomaterial. The photocatalytic evaluation showed that methylene blue (MB) dye was effectively degraded by about 98% under UV light in the presence of ZnO NPs. Furthermore, excellent antibacterial activity was shown against Escherichia coli and Staphylococcus aureus, and significant antioxidant activity was exhibited through 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging. These characteristics are promising, implying that ZnO synthesized from green tea leaf extract can be an ecological alternative route to chemical methods and potential candidates for applications in nanomedicine, food preservation, and photocatalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Silva AA, Sousa AMF, Furtado CRG, Carvalho NMF (2022) Green magnesium oxide prepared by plant extracts: synthesis, properties and applications. Mater Today Sustain 20:100203. https://doi.org/10.1016/j.mtsust.2022.100203

    Article  Google Scholar 

  2. Samuel MS, Ravikumar M, John A et al (2022) A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts 12:459. https://doi.org/10.3390/catal12050459

    Article  Google Scholar 

  3. Wojnarowicz J, Chudoba T, Lojkowski W (2020) A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials 10:1086. https://doi.org/10.3390/NANO10061086

    Article  Google Scholar 

  4. Manimaran K (2023) (2023) Synthesis and characterization of Pleurotus citrinopileatus extract–mediated iron oxide (FeO) nanoparticles and its antibacterial and anticancer activity. Biomass Convers Biorefinery 1:1–10. https://doi.org/10.1007/S13399-023-04072-5

    Article  Google Scholar 

  5. Benassai E, Del Bubba M, Ancillotti C et al (2021) Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from Vaccinium species: Characterization and antimicrobial activity. Mater Sci Eng C 119:111453. https://doi.org/10.1016/j.msec.2020.111453

    Article  Google Scholar 

  6. Patra JK, Das G, Kumar A et al (2018) Photo-mediated biosynthesis of silver nanoparticles using the non-edible accrescent fruiting calyx of Physalis peruviana L. fruits and investigation of its radical scavenging potential and cytotoxicity activities. J Photochem Photobiol B Biol 188:116–125. https://doi.org/10.1016/j.jphotobiol.2018.08.004

    Article  Google Scholar 

  7. Jeevanandam J, Kiew SF, Boakye-Ansah S et al (2022) Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 14:2534–2571. https://doi.org/10.1039/D1NR08144F

    Article  Google Scholar 

  8. Chikkanna MM, Neelagund SE, Rajashekarappa KK (2019) Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl Sci 1:1–10. https://doi.org/10.1007/s42452-018-0095-7

    Article  Google Scholar 

  9. Ravichandran S, Radhakrishnan J, Sengodan P et al (2022) Bio synthesis of Zinc oxide nanoparticles using Clerodendrum phlomidis extract for antibacterial, anticancer, antioxidant and photocatalytic studies. J Mater Sci Mater Electron 33:11455–11466. https://doi.org/10.1007/s10854-022-08118-8

    Article  Google Scholar 

  10. Albo Hay Allah MA, Alshamsi HA (2022) Green synthesis of ZnO NPs using Pontederia crassipes leaf extract: characterization, their adsorption behavior and anti-cancer property. Biomass Convers Biorefinery 2022:1–14. https://doi.org/10.1007/S13399-022-03091-Y

    Article  Google Scholar 

  11. Shinde RS, More RA, Adole VA et al (2021) Design, fabrication, antitubercular, antibacterial, antifungal and antioxidant study of silver doped ZnO and CuO nano candidates: A comparative pharmacological study. Curr Res Green Sustain Chem 4:100138. https://doi.org/10.1016/J.CRGSC.2021.100138

    Article  Google Scholar 

  12. Ashpak Shaikh A, RajendraPatil M, SonuJagdale B, Ashok Adole V (2023) Synthesis and characterization of Ag doped ZnO nanomaterial as an effective photocatalyst for photocatalytic degradation of Eriochrome Black T dye and antimicrobial agent. Inorg Chem Commun 151:110570. https://doi.org/10.1016/J.INOCHE.2023.110570

    Article  Google Scholar 

  13. Magar MH, Adole VA, Waghchaure RH, Pawar TB (2022) Efficient photocatalytic degradation of eosin blue dye and antibacterial study using nanostructured zinc oxide and nickel modified zinc oxide. Results Chem 4:100537. https://doi.org/10.1016/J.RECHEM.2022.100537

    Article  Google Scholar 

  14. Waghchaure RH, Adole VA (2023) Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J Indian Chem Soc 100:100987. https://doi.org/10.1016/J.JICS.2023.100987

    Article  Google Scholar 

  15. Vieira IRS, de Carvalho APA, Conte-Junior CA (2022) Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 21:3673–3716. https://doi.org/10.1111/1541-4337.12990

  16. Ravichandran V, Sumitha S, Ning CY et al (2020) Durian waste mediated green synthesis of zinc oxide nanoparticles and evaluation of their antibacterial, antioxidant, cytotoxicity and photocatalytic activity. Green Chem Lett Rev 13:102–116. https://doi.org/10.1080/17518253.2020.1738562

    Article  Google Scholar 

  17. Verma R, Pathak S, Srivastava AK et al (2021) ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J Alloys Compd 876:160175. https://doi.org/10.1016/J.JALLCOM.2021.160175

    Article  Google Scholar 

  18. Kalpana VN, Devi Rajeswari V (2018) A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl 2018:1–12. https://doi.org/10.1155/2018/3569758

    Article  Google Scholar 

  19. Souza VGL, Rodrigues C, Valente S et al (2020) Eco-friendly ZnO/chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings 10:110. https://doi.org/10.3390/COATINGS10020110

    Article  Google Scholar 

  20. Kalia A, Kaur M, Shami A et al (2021) Nettle-leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit. Biomolecules 11:224. https://doi.org/10.3390/biom11020224

    Article  Google Scholar 

  21. Alamdari S, Mirzaee O, NasiriJahroodi F et al (2022) Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surf Interfaces 34:102349. https://doi.org/10.1016/J.SURFIN.2022.102349

    Article  Google Scholar 

  22. Roy S, Priyadarshi R, Rhim J-W et al (2021) Development of multifunctional pullulan/chitosan-based composite films reinforced with ZnO nanoparticles and propolis for meat packaging applications. Foods 10:2789. https://doi.org/10.3390/FOODS10112789

    Article  Google Scholar 

  23. Anbuvannan M, Ramesh M, Viruthagiri G et al (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta Part A Mol Biomol Spectrosc 143:304–308. https://doi.org/10.1016/j.saa.2015.01.124

    Article  Google Scholar 

  24. Vasantharaj S, Sathiyavimal S, Senthilkumar P et al (2021) Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J Environ Chem Eng 9:105772. https://doi.org/10.1016/j.jece.2021.105772

    Article  Google Scholar 

  25. Mahlaule-Glory LM, Hintsho-Mbita NC (2022) Green derived zinc oxide (ZnO) for the degradation of dyes from wastewater and their antimicrobial activity: A review. Catalysts 12:833. https://doi.org/10.3390/catal12080833

    Article  Google Scholar 

  26. Nazir A, Akbar A, Baghdadi HB et al (2021) Zinc oxide nanoparticles fabrication using Eriobotrya japonica leaves extract: Photocatalytic performance and antibacterial activity evaluation. Arab J Chem 14:103251. https://doi.org/10.1016/j.arabjc.2021.103251

    Article  Google Scholar 

  27. Soto-Robles CA, Nava O, Cornejo L et al (2021) Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue. J Mol Struct 1225:129101. https://doi.org/10.1016/j.molstruc.2020.129101

    Article  Google Scholar 

  28. Raja A, Ashokkumar S, Pavithra Marthandam R et al (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B Biol 181:53–58. https://doi.org/10.1016/j.jphotobiol.2018.02.011

    Article  Google Scholar 

  29. HaribhauWaghchaure R, Ashok Adole V, SonuJagdale B, BhimraoKoli P (2022) Fe3+ modified zinc oxide nanomaterial as an efficient, multifaceted material for photocatalytic degradation of MB dye and ethanol gas sensor as part of environmental rectification. Inorg Chem Commun 140:109450. https://doi.org/10.1016/J.INOCHE.2022.109450

    Article  Google Scholar 

  30. Waghchaure RH, Adole VA, Kushare SS et al (2023) Visible light prompted and modified ZnO catalyzed rapid and efficient removal of hazardous crystal violet dye from aqueous solution: A systematic experimental study. Results Chem 5:100773. https://doi.org/10.1016/J.RECHEM.2023.100773

    Article  Google Scholar 

  31. Shinde RS, Khairnar SD, Patil MR et al (2022) Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation. J Inorg Organomet Polym Mater 32:1045–1066. https://doi.org/10.1007/S10904-021-02178-9

    Article  Google Scholar 

  32. Iqbal Y, Raouf Malik A, Iqbal T et al (2021) Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater Lett 305:130671. https://doi.org/10.1016/j.matlet.2021.130671

    Article  Google Scholar 

  33. Shim YJ, Soshnikova V, Anandapadmanaban G et al (2019) Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue. Optik (Stuttg) 182:1015–1020. https://doi.org/10.1016/j.ijleo.2018.11.144

    Article  Google Scholar 

  34. Silva AA, Rocha EBD, Furtado CRG et al (2021) Magnesium oxide biosynthesized with Camellia sinensis extract as activator in nitrile rubber vulcanization. Polym Bull 78:6205–6219. https://doi.org/10.1007/s00289-020-03430-x

    Article  Google Scholar 

  35. Kalita C, Sarkar RD, Verma V et al (2021) Bayesian modeling coherenced green synthesis of NiO nanoparticles using Camellia sinensis for efficient antimicrobial activity. Bionanoscience 11:825–837. https://doi.org/10.1007/s12668-021-00882-x

    Article  Google Scholar 

  36. EmimaJeronsia J, Ragu R, Sowmya R et al (2020) Comparative investigation on Camellia Sinensis mediated green synthesis of Ag and Ag/GO nanocomposites for its anticancer and antibacterial efficacy. Surfaces and Interfaces 21:100787. https://doi.org/10.1016/j.surfin.2020.100787

    Article  Google Scholar 

  37. Franco RT, Silva AL, Licea YE et al (2021) Green synthesis of iron oxides and phosphates via thermal treatment of iron polyphenols synthesized by a Camellia sinensis extract. Inorg Chem 60:5734–5746. https://doi.org/10.1021/acs.inorgchem.0c03794

    Article  Google Scholar 

  38. Franco RT, Silva AL, Licea YE et al (2023) Effect of Camellia sinensis origin and heat treatment in the iron oxides nanomaterials composition and fenton degradation of methyl orange. J Braz Chem Soc 34:694–704. https://doi.org/10.21577/0103-5053.20220140

    Article  Google Scholar 

  39. Rubab S, Rizwani GH, Bahadur S et al (2020) Determination of the GC–MS analysis of seed oil and assessment of pharmacokinetics of leaf extract of Camellia sinensis L. J King Saud Univ - Sci 32:3138–3144. https://doi.org/10.1016/j.jksus.2020.08.026

    Article  Google Scholar 

  40. MalligArjuna Rao S, Kotteeswaran S, Visagamani AM (2021) Green synthesis of zinc oxide nanoparticles from camellia sinensis: Organic dye degradation and antibacterial activity. Inorg Chem Commun 134:108956. https://doi.org/10.1016/j.inoche.2021.108956

    Article  Google Scholar 

  41. Al-Ghamdi SA, Alkathiri TA, Alfarraj AE et al (2022) Green synthesis and characterization of zinc oxide nanoparticles using Camellia sinensis tea leaf extract and their antioxidant, anti-bactericidal and anticancer efficacy. Res Chem Intermed 48:4769–4783. https://doi.org/10.1007/s11164-022-04845-z

    Article  Google Scholar 

  42. Arumai Selvan D, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A (2018) Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J Photochem Photobiol B Biol 180:243–252. https://doi.org/10.1016/j.jphotobiol.2018.02.014

    Article  Google Scholar 

  43. Nava OJ, Luque PA, Gómez-Gutiérrez CM et al (2017) Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. J Mol Struct 1134:121–125. https://doi.org/10.1016/j.molstruc.2016.12.069

    Article  Google Scholar 

  44. Dhanemozhi AC, Rajeswari V, Sathyajothi S (2017) Green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application. Mater Today Proc 4:660–667. https://doi.org/10.1016/j.matpr.2017.01.070

    Article  Google Scholar 

  45. Atchudan R, Edison TNJI, Perumal S et al (2016) Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B Biol 162:500–510. https://doi.org/10.1016/j.jphotobiol.2016.07.019

    Article  Google Scholar 

  46. Anju Chanu L, Joychandra Singh W, Jugeshwar Singh K, Nomita Devi K (2019) Effect of operational parameters on the photocatalytic degradation of methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys 12:1230–1237. https://doi.org/10.1016/j.rinp.2018.12.089

    Article  Google Scholar 

  47. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. https://doi.org/10.1038/nprot.2007.521

    Article  Google Scholar 

  48. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  49. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365. https://doi.org/10.1016/j.molstruc.2016.07.029

    Article  Google Scholar 

  50. Chemingui H, Missaoui T, Mzali JC et al (2019) Facile green synthesis of zinc oxide nanoparticles (ZnO NPs): Antibacterial and photocatalytic activities. Mater Res Express 6:1050b4. https://doi.org/10.1088/2053-1591/ab3cd6

    Article  Google Scholar 

  51. Kamarajan G, Anburaj DB, Porkalai V et al (2022) Green synthesis of ZnO nanoparticles using Acalypha indica leaf extract and their photocatalyst degradation and antibacterial activity. J Indian Chem Soc 99:100695. https://doi.org/10.1016/j.jics.2022.100695

    Article  Google Scholar 

  52. Siripireddy B, Mandal BK (2017) Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol 28:785–797. https://doi.org/10.1016/j.apt.2016.11.026

    Article  Google Scholar 

  53. Bhuyan T, Mishra K, Khanuja M et al (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61. https://doi.org/10.1016/j.mssp.2014.12.053

    Article  Google Scholar 

  54. Mahalakshmi S, Hema N, Vijaya PP (2020) In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route—A comparative study. Bionanoscience 10:112–121. https://doi.org/10.1007/s12668-019-00698-w

    Article  Google Scholar 

  55. Bhardwaj R, Singh JP, Chae KH et al (2018) Electronic and magnetic structure investigation of vanadium doped ZnO nanostructure. Vacuum 158:257–262. https://doi.org/10.1016/J.VACUUM.2018.09.053

    Article  Google Scholar 

  56. Hassan SA, Mujahid H, Ali MM et al (2021) Synthesis, characterization and protective effect of green tea-mediated zinc oxide nanoparticles against ochratoxin A induced hepatotoxicity and nephrotoxicity in albino rats. Appl Nanosci 11:2281–2289. https://doi.org/10.1007/s13204-021-02006-z

    Article  Google Scholar 

  57. Balaji G, Chalamaiah M, Hanumanna P et al (2019) Mast cell stabilizing and anti-anaphylactic activity of aqueous extract of green tea (Camellia sinensis). Int J Vet Sci Med 2:89–94. https://doi.org/10.1016/j.ijvsm.2014.03.001

    Article  Google Scholar 

  58. Shubha JP, Kavalli K, Adil SF et al (2022) Facile green synthesis of semiconductive ZnO nanoparticles for photocatalytic degradation of dyes from the textile industry: A kinetic approach. J King Saud Univ - Sci 34:102047. https://doi.org/10.1016/j.jksus.2022.102047

    Article  Google Scholar 

  59. Luque-Morales PA, López-Peraza A, Nava-Olivas OJ et al (2021) ZnO semiconductor nanoparticles and their application in photocatalytic degradation of various organic dyes. Materials (Basel) 14:7537. https://doi.org/10.3390/MA14247537

    Article  Google Scholar 

  60. Luque PA, Soto-Robles CA, Nava O et al (2018) Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract. J Mater Sci Mater Electron 29:9764–9770. https://doi.org/10.1007/s10854-018-9015-2

    Article  Google Scholar 

  61. Aldalbahi A, Alterary S, Ali Abdullrahman Almoghim R et al (2020) Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules 25:4198. https://doi.org/10.3390/molecules25184198

    Article  Google Scholar 

  62. Abdelhakim HK, El-Sayed ER, Rashidi FB (2020) Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J Appl Microbiol 128:1634–1646. https://doi.org/10.1111/JAM.14581

    Article  Google Scholar 

  63. Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–174. https://doi.org/10.1016/j.matlet.2012.09.044

    Article  Google Scholar 

  64. Baruah R, Yadav A, Das AM (2021) Livistona jekinsiana fabricated ZnO nanoparticles and their detrimental effect towards anthropogenic organic pollutants and human pathogenic bacteria. Spectrochim Acta - Part A Mol Biomol Spectrosc 251:119459. https://doi.org/10.1016/j.saa.2021.119459

  65. Waghchaure RH, Adole VA, Jagdale BS (2022) Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorg Chem Commun 143:109764. https://doi.org/10.1016/j.inoche.2022.109764

    Article  Google Scholar 

  66. Jia P, Tan H, Liu K, Gao W (2018) Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite. Mater Res Bull 102:45–50. https://doi.org/10.1016/j.materresbull.2018.02.018

    Article  Google Scholar 

  67. Rambabu K, Bharath G, Banat F, Show PL (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater 402:123560. https://doi.org/10.1016/j.jhazmat.2020.123560

    Article  Google Scholar 

  68. Liu YC, Li JF, Ahn JC et al (2020) Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik (Stuttg) 218:165245. https://doi.org/10.1016/J.IJLEO.2020.165245

    Article  Google Scholar 

  69. Pai S, Sridevi H, Varadavenkatesan T et al (2019) Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization. Optik (Stuttg) 185:248–255. https://doi.org/10.1016/j.ijleo.2019.03.101

    Article  Google Scholar 

  70. Chen L, Batjikh I, Hurh J et al (2019) Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik (Stuttg) 184:324–329. https://doi.org/10.1016/j.ijleo.2019.03.051

    Article  Google Scholar 

  71. Abdullah FH, Abu Bakar NHH, Abu Bakar M (2020) Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik (Stuttg) 206:164279. https://doi.org/10.1016/j.ijleo.2020.164279

    Article  Google Scholar 

  72. Zare E, Pourseyedi S, Khatami M, Darezereshki E (2017) Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J Mol Struct 1146:96–103. https://doi.org/10.1016/j.molstruc.2017.05.118

    Article  Google Scholar 

  73. Suresh D, Nethravathi PC et al (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 31:446–454. https://doi.org/10.1016/j.mssp.2014.12.023

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) Brazil — grant numbers [E-26/204.254/2021; E-26/204.255/2021; and E-26/200.891/2021]; the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil — grant numbers [13119/2020–1; 309461/2021–9; 140873/2021–0; 402215/2022–2 and 200468/2022–7]; and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazil — grant numbers [88887.518753/2020–00; and 88887.518752/2020–00].

Author information

Authors and Affiliations

Authors

Contributions

Italo Rennan Sousa Vieira: Conceptualization, Methodology, Investigation, Data Curation, Writing—original draft, Writing—review & editing, Project administration. Arianne Aparecida da Silva, Bruno Dutra da Silva, Luiz Torres Neto, Leticia Tessaro: Methodology, Writing—review & editing. Cristina Russi Guimarães Furtado, Ana Maria Furtado de Sousa, Nakédia M. F. Carvalho: Writing—review & editing, Supervision. Carlos Adam Conte-Junior: Writing—review & editing, Supervision, Project administration, Funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Italo Rennan Sousa Vieira.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, I.R.S., da Silva, A.A., da Silva, B.D. et al. Eco-friendly synthesis of ZnO nanomaterial from green tea extract: photocatalytic, antibacterial and antioxidant potential. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04456-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04456-7

Keywords

Navigation