Skip to main content

Advertisement

Log in

Enhancing enzymatic hydrolysis of industrial hemp hurds (Cannabis sativa L.) by combination of soaking in dilute acid and steam pretreatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The goal of this study was to develop an operational pretreatment for effective modifications of physico-chemical properties of industrial hemp hurds (IHH) to improve hemicelluloses solubilization and enzymatic hydrolysis extent of potentially fermentable sugars. The pretreatment consisted firstly in soaking in dilute H2SO4 solution, at concentrations ranged from 0.4 to 5% (w/w) and secondly in thermomechanical treatment, termed as IV-HMT (Intensive Vacuum associated to Heat Moisture Treatment) that works at moderate saturated steam conditions (0.7 MPa for 30 min) corresponding to combined severity factor (CS) from-1.02 to 1.4. The pretreatment efficiency was investigated according to changes in chemical composition, microstructure of IHH (ABET surface area, SEM, crystallinity by XRD, FTIR) and enzymatic hydrolysis yield. FTIR analysis showed that the structure linkages between lignin and carbohydrates were changed, as indicated by the reduction in peak bonds intensities ranged from 1510 to 1242 cm−1 and confirmed from chemical analysis by a maximum of 70.3% lignin removal. The specific surface area exhibited progressive increase with CS, reaching up 2.3 times that of raw IHH (0.9 m2/g). Due to extractives removal, crystallinity index (CI) increased from 15 (raw) to 25% for acid-free IV-HMT and then decreased in presence of H2SO4 consequently to transition from crystalline to amorphous structure. Maximum xylose and glucose production were obtained at low acid concentration (0.6%) combined with IV-HMT, with overall reducing sugars of 96.3%. The maximum production of inhibitors was obtained for 2% H2SO4 and corresponded to 0.022 g/L and 0.48 g/L for furfural and HMF respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are supplied within the manuscript.

Abbreviations

ABET :

Specific surface area determiner by BET method (Brunauer, Emmett, and Teller)

AL :

Acid loading (g/kg DM)

CI :

Crystallinity index (%)

CS :

Combined severity factor

DM :

Dry material basis (%)

DNS :

3,5-Dinitrosalicylic acid

FTIR :

Fourier transform infrared spectroscopy

HMF :

Hydroxymethyl furfural

IHH :

Industrial hemp hurds

IV-AF :

Raw material treated by IV-HMT without acid impregnation

IV-AI-X :

Raw material treated by IV-HMT after impregnation in acid solution at concentration X

IV-HMT :

Intensive vacuum-heat moisture treatment

NREL :

National Renewable Energy Laboratory

ORS :

Overall reducing sugar (%)

SD :

Standard deviation

SEM :

Scanning electron microscopy

XRD :

X-ray diffraction

References

  1. Zhou Z, Liu D, Zhao X (2021) Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew Sustain Energy Rev 146:111169. https://doi.org/10.1016/j.rser2021.111169

    Article  Google Scholar 

  2. Ahmed FS, Mofijur M, Chowdhury SN, Nahrin M, Rafa N, Chowdhury AT, Nuzhat S, Ong HC (2022) Pathways of lignocellulosic biomass deconstruction for biofuel and value-added products production. Fuel 318:123618. https://doi.org/10.1016/j.fuel.2022.123618

    Article  Google Scholar 

  3. Eggert H, Greaker M (2014) Promoting second generation biofuels: does the first generation pave the road? Energies 7:4430–4445. https://doi.org/10.3390/en7074430

    Article  Google Scholar 

  4. Ballerini D (2011) Les biocarburants : répondre aux défis énergétiques et environnementaux des transports. Technip Eds, France. https://www.lavoisier.fr/livre/sciences-de-la-vie/les-biocarburants-repondre-aux-defisenergetiques-et-environnementaux-des-transports/ballerini/descriptif_2585489

  5. García A, González Alriols M, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crops Prod 53:102–110. https://doi.org/10.1016/j.indcrop.2013.12.019

    Article  Google Scholar 

  6. Alio AM, Tugui OC, Rusu L, Pons A, Vial C (2020) Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresour Technol 310:123412. https://doi.org/10.1016/j.biortech.2020.123412

    Article  Google Scholar 

  7. Hammond GP, Mansell RVM (2018) A comparative thermodynamic evaluation of bioethanol processing from wheat straw. App Energy 224:136–146. https://doi.org/10.1016/j.apenergy.2018.04.123

    Article  Google Scholar 

  8. Liu L, Zhang Z, Wang J, Sun Q, Shi W, Liu X (2019) Combination of pretreatment of seam explosion and NaOH enhances enzymatic saccharification of corn stover. BioResources 14:1157–1173. https://doi.org/10.15376/biores.14.1.1157-1173

    Article  Google Scholar 

  9. Marks C, Viell J (2021) Acetosolv pretreatment of wood for biorefinery applications. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02023-6

    Article  Google Scholar 

  10. Amoah J, Ogura K, Schmetz Q, Kondo A, Ogino C (2019) Co-fermentation of xylose and glucose from ionic liquid pretreated sugar cane bagasse for bioethanol production using engineered xylose assimilating yeast. Biomass Bioenergy 128:105283. https://doi.org/10.1016/j.biombioe.2019.105283

    Article  Google Scholar 

  11. Tang K, Struik PC, Yin X, Thouminot C, Bjelková M, Stramkale V, Amaducci S (2016) Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Ind Crops Prod 87:33–44. https://doi.org/10.1016/j.indcrop.2016.04.026

    Article  Google Scholar 

  12. Finnan J, Styles D (2013) Hemp: A more sustainable annual energy crop for climate and energy policy. Energy Policy 58:152–162. https://doi.org/10.1016/j.enpol.2013.02.046

    Article  Google Scholar 

  13. Gümüşkaya E, Usta M, Balaban M (2007) Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresour Technol 98:491–497. https://doi.org/10.1016/j.biortech.2006.02.031

    Article  Google Scholar 

  14. Müssig J, Haag K, Musio S, Bjelková M, Albrecht K, Uhrlaub B, Wang S, Wieland H, Amaducci S (2020) Biobased ‘Mid-performance’ composites using losses from the hackling process of long hemp – a feasibility study as part of the development of a biorefinery concept. Ind Crops Prod 145:111938. https://doi.org/10.1016/j.indcrop.2019.111938

    Article  Google Scholar 

  15. Zhao J, Xu Y, Wang W, Griffin J, Roozeboom K, Wang D (2020) Bioconversion of industrial hemp biomass for bioethanol production: a review. Fuel 281:118725. https://doi.org/10.1016/j.fuel.2020.118725

    Article  Google Scholar 

  16. Gandolfi S, Ottolina G, Consonni R, Riva S, Patel I (2014) Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. Chemsuschem 7:1991–1999. https://doi.org/10.1002/cssc.201301396

    Article  Google Scholar 

  17. Yu Y, Wu J, Ren X, Lau A, Rezaei H, Takada M, Bi X, Sokhansanj S (2022) Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: a review. Renew Sustain Energy Rev 154:111871. https://doi.org/10.1016/j.rser.2021.111871

    Article  Google Scholar 

  18. Kumar S, Gandhi P, Yadav M, Paritosh K, Pareek N, Vivekanand V (2019) Weak alkaline treatment of wheat and pearl millet straw for enhanced biogas production and its economic analysis. Renew Energy 139:753–776. https://doi.org/10.1016/j.renene.2019.02.133

    Article  Google Scholar 

  19. Wawro A, Batog J, Gieparda W (2021) Polish varieties of industrial hemp and their utilisation in the efficient production of lignocellulosic ethanol. Molecules 26:6467. https://doi.org/10.3390/molecules26216467

    Article  Google Scholar 

  20. Bhatia K, Jatap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Banu JR, Rao CV, Kim YG, Yang YH (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724

    Article  Google Scholar 

  21. Sun D, Lv ZW, Rao J, Tian R, Sun SN, Peng F (2022) Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: a review. Carbohyd Polym 281:119050. https://doi.org/10.1016/j.carbpol.2021.119050

    Article  Google Scholar 

  22. Vaidya AA, Murton KD, Smith DA, Dedual G (2022) A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conv Bioref 13:5427–5442. https://doi.org/10.1007/s13399-022-02373-9

    Article  Google Scholar 

  23. Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457. https://doi.org/10.1016/j.energy.2020.117457

    Article  Google Scholar 

  24. Agbor V, Zurzolo F, Blunt W, Dartiailh C, Cicek N, Sparling R, Levi DB (2014) Single-step fermentation of agricultural hemp residues for hydrogen and ethanol production. Biomass Bioenerg 64:62–69. https://doi.org/10.1016/j.biombioe.2014.03.027

    Article  Google Scholar 

  25. He Q, Hou Q, Hong L, Lu X, Ziegler-Devin I, Chrusciel L, Besserer A, Brosse N (2022) Effect of highly efficient steam explosion treatment on beech, poplar and spruce solid wood physicochemical and permeable performances. Ind Crops Prod 182:114901. https://doi.org/10.1016/j.indcrop.2022.114901

    Article  Google Scholar 

  26. Gao H, Wang Y, Yang Q, Peng Q, Li Y, Zhan D, Wei H, Lu H, Bakr MMA, El Sheekh M, Qi Z, Peng L, Lin X (2021) Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old Bamboo. Renew Energy 175:1069–1079. https://doi.org/10.1016/j.renene.2021.05.016

    Article  Google Scholar 

  27. Tupciauskas R, Rizhikovs J, Brazdausks P, Fridrihsone V, Andzs M (2021) Influence of steam explosion pre-treatment conditions on binder-less boards from hemp shives and wheat straw. Ind Crops Prod 170:113717. https://doi.org/10.1016/j.indcrop.2021.113717

    Article  Google Scholar 

  28. Sarker TR, Pattnaik F, Nanda S, Dalai AK, Meda V, Naik S (2021) Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere 284:131372. https://doi.org/10.1016/j.chemosphere.2021.131372

    Article  Google Scholar 

  29. Martin-Sampedro R, Revilla E, Villar JC, Eugenio ME (2014) Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment. Bioresour Technol 167:186–191. https://doi.org/10.1016/j.biortech.2014.06.027

    Article  Google Scholar 

  30. Rochòn E, Cabrera MN, Scutari V, Cagno M, Guibaud A, Martínez S, Böthig S, Guchin N, Ferrari MD, Lareo C (2022) Co-production of bioethanol and xylosaccharides from steam-exploded eucalyptus sawdust using high solid loads in enzymatic hydrolysis: effect of alkaline impregnation. Ind Crops Prod 175:114253. https://doi.org/10.1016/j.indcrop.2021.114253

    Article  Google Scholar 

  31. Kendrick EG, Bhatia R, Barbosa FC, Goldbeck R, Gallagher JA, Leak DJ (2022) Enzymatic generation of short chain cello-oligosaccharides from Miscanthus using different pretreatments. Bioresour Technol 358:127399. https://doi.org/10.1016/j.biortech.2022.127399

    Article  Google Scholar 

  32. Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10:866–885. https://doi.org/10.1002/biot.201400705

    Article  Google Scholar 

  33. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  Google Scholar 

  34. Duque A, Manzanares P, Ballesteros I, Ballesteros M (2016) Steam explosion as lignocellulosic biomass pretreatment. In: Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier Eds, pp 349–368. https://doi.org/10.1016/B978-0-12-802323-5.00015-3

  35. Semhaoui I (2019) Amélioration de la bioconversion de la chènevotte (cannabis sativa) et de l’alfa (stipa tenacissima) par prétraitement thermomécanique en présence d’un catalyseur acide ou alcalin. Phd Thesis. La Rochelle University. France

  36. Bahrani SA, Monteau JY, Rezzoug SA, Loisel C, Maache-Rezzoug Z (2014) Physics-based modeling of simultaneous heat and mass transfer intensification during vacuum steaming processes of starchy material. Chem Eng Process 85:216–226. https://doi.org/10.1016/j.cep.2014.09.005

    Article  Google Scholar 

  37. Maache-Rezzoug Z, Pierre G, Nouviaire A, Maugard T, Rezzoug SA (2011) Optimizing thermomechanical pretreatment conditions to enhance enzymatic hydrolysis of wheat straw by response surface methodology. Biomass Bioenerg 35:3129–3138. https://doi.org/10.1016/j.biombioe.2011.04.012

    Article  Google Scholar 

  38. Semhaoui I, Maugard T, Zarguili I, Rezzoug SA, Zhao JMQ, Toyir J, Nawdali M, Maache-Rezzoug Z (2018) Eco-friendly process combining acid-catalyst and thermomechanical pretreatment for improving enzymatic hydrolysis of hemp hurds. Bioresour Technol 257:192–200. https://doi.org/10.1016/j.biortech.2018.02.107

    Article  Google Scholar 

  39. Maache-Rezzoug Z, Maugard T, Qiuyu ZJM, Nouviaire A, Rezzoug SA (2015) Combined steam-explosion toward vacuum and dilute-acid spraying of wheat straw. Impact of severity factor on enzymatic hydrolysis. Renew Energy 78:516–526. https://doi.org/10.1016/j.renene.2015.01.038

    Article  Google Scholar 

  40. Liao W, Liu Y, Wen Z, Frear C, Chen S (2008) Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnol Bioeng 101:441–451. https://doi.org/10.1002/bit.21921

    Article  Google Scholar 

  41. Su Y, Fang L, Wang P, Lai C, Huang C, Ling Z, Yong Q (2022) Coproduction of xylooligosaccharides and monosaccharides from hardwood by a combination of acetic acid pretreatment, mechanical refining and enzymatic hydrolysis. Bioresour Technol 358:127365. https://doi.org/10.1016/j.biortech.2022.127365

    Article  Google Scholar 

  42. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. In: Laboratory Analytical Procedure (LAP). Technical report, NREL/TP-510–42618

  43. Zhao J, Xu Y, Wang W, Griffin J, Wang D (2020) Conversion of liquid hot water, acid and alkali pretreated industrial hemp. Bioresour Technol 309:123383. https://doi.org/10.1016/j.biortech.2020.123383

    Article  Google Scholar 

  44. Chen J, Hu SC, Geng ZC, Zhu MQ (2022) Effect of structural changes of lignin during the microwave-assisted alkaline/ethanol pretreatment on cotton stalk for an effective enzymatic hydrolysis. Energy 254:124402. https://doi.org/10.1016/j.energy.2022.124402

    Article  Google Scholar 

  45. Wang Z, Huang Y, Zhang F, Xie H, Jiang G, Lv D, Zhang H, Lam SS, Song A (2022) Improving enzymatic saccharification of corn stover via thioglycolic acid-mediated Fenton pretreatment. J Clean Prod 365:132804. https://doi.org/10.1016/j.jclepro.2022.132804

    Article  Google Scholar 

  46. Akhtar N, Gupta K, Goyal D, Goyal A (2015) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. AIChE J 35:489–511. https://doi.org/10.1002/ep.12257

    Article  Google Scholar 

  47. Faik A (2013) Plant Cell Wall Structure-Pretreatment. The critical relationship in biomass conversion to fermentable sugars, In: Gu T (ed), Green biomass pretreatment for biofuels production. Springer Briefs in Green Chemistry for Sustainability, pp 1-30. https://doi.org/10.1007/978-94-007-6052-31

  48. El Hage R, Chrusciel L, Desharnais L, Brosse N (2010) Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 101:9321–9329. https://doi.org/10.1016/j.biortech.2010.06.143

    Article  Google Scholar 

  49. Maniet G, Schmetz Q, Jacquet N, Temmerman M, Gofflot S, Richel A (2017) Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Ind Crops Prod 99:79–85. https://doi.org/10.1016/j.indcrop.2017.01.015

    Article  Google Scholar 

  50. Troncoso-Ortega E, Castillo RDP, Reyes-Contreras P, Castano-Rivera P, Teixeira Mendonça R, Schiappacasse N, Parra C (2021) Effects on lignin redistribution in Eucalyptus globulus fibres pre-treated by steam explosion: a microscale study to cellulose accessibility. Biomolecules 11:507. https://doi.org/10.3390/biom11040507

    Article  Google Scholar 

  51. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12. https://doi.org/10.1016/j.biortech.2012.04.037

    Article  Google Scholar 

  52. Jacquet N, Quiévy N, Vanderghem C, Janas S, Blecker C, Wathelet B, Devaux J, Paquot M (2011) Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stab 96:1582–1588. https://doi.org/10.1016/j.polymdegradstab.2011.05.021

    Article  Google Scholar 

  53. Karimi K, Shafie M, Kumar R (2014) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta VK and Tuohy MG (eds), Biofuel Technologies: Recent Developments, pp 53–96. https://doi.org/10.1007/978-3-642-34519-7

  54. Ko YK, Kim Y, Ximenes E, Ladish MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112:252–262. https://doi.org/10.1002/bit.25349

    Article  Google Scholar 

  55. Selvakumar P, Adane AA, Zelalem T, Hunegnaw BM, Karthik V, Kavitha S, Jayakumar M, Karmegam N, Govarthanan M, Kim W (2022) Optimization of binary acids pretreatment of corncob biomass for enhanced recovery of cellulose to produce bioethanol. Fuel 321:124060. https://doi.org/10.1016/j.fuel.2022.124060

    Article  Google Scholar 

  56. Kang Y, Bansal P, Realff MJ, Bommarius AS (2013) SO2-catalyzed steam explosion: the effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. Biotechnol Prog 29:909–916. https://doi.org/10.1002/btpr.1751

    Article  Google Scholar 

  57. Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23. https://doi.org/10.1016/j.apsusc.2013.02.086

    Article  Google Scholar 

  58. Ranjan A, Welz PJ, Mthethwa T (2023) Investigation of an effective acid pre-treatment method for the valorisation of Canola fines. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-03946-y

    Article  Google Scholar 

  59. Pejić BM, Kramar AD, Obradović BM, Kuraica MM, Žekić AA, Kostić MM (2020) Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L.). Carbohyd Polym 236:116000. https://doi.org/10.1016/j.carbpol.2020.116000

    Article  Google Scholar 

  60. Beluns S, Gaidukovs S, Platnieks O, Gaidukova G, Mierina I, Grase L, Starkova O, Brazdauks P, Thakur VK (2021) From wood and hemp biomass wastes to sustainable cellulose foams. Ind crops Prod 170:113780. https://doi.org/10.1016/j.indcrop.2021.113780

    Article  Google Scholar 

  61. Gandolfi S, Ottolina G, Riva S, Fantoni GP, Patel I (2013) Complete chemical analysis of carmagnola hemp hurds and structural features of its components. BioResources 8:2641–2656. https://doi.org/10.15376/biores.8.2.2641-2656

    Article  Google Scholar 

  62. Kuglarz M, Alvarado-Morales M, Karakashev D, Angelidaki I (2016) Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour Technol 200:639–647. https://doi.org/10.1016/j.biortech.2015.10.081

    Article  Google Scholar 

  63. Chen Y, Stevens MA, Zhu Y, Holmes J, Moxley G, Xu H (2012) Reducing acid in dilute acid pretreatment and the impact on enzymatic saccharification. J Ind Microbiol Biotechnol 39:691–700. https://doi.org/10.1007/s10295-011-1068-7

    Article  Google Scholar 

  64. Ballesteros M, Negro MJ, Manzanares P, Ballesteros I, Saez F, Oliva JM (2007) Fractionation of Cynara cardunculus (Cardoon) biomass by bilute-acid pretreatment. Appl Biochem Biotechnol 137:239–252. https://doi.org/10.1007/s12010-007-9055-1

    Article  Google Scholar 

  65. Sharma S, Kumar R, Gaur R, Agrawal R, Gupta RP, Tuli DK, Das B (2015) Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw. Bioresour Technol 175:350–357. https://doi.org/10.1016/j.biortech.2014.10.112

    Article  Google Scholar 

  66. Zhao J, Griffin J, Roozeboom K, Lee J, Wang D (2021) Lignin, sugar and firan production of industrial hemp biomass via an integrated process. Ind Crops Prod 172:114049. https://doi.org/10.1016/j.indcrop.2021.114049

    Article  Google Scholar 

Download references

Funding

The study was performed through “Partenariat Hubert Curien (PHC)” proposal and Toubkal project. Grant number: Toubkal/15/13-Campus France: 32486SD.

Author information

Authors and Affiliations

Authors

Contributions

MRZ, MT, ZI, and RSA conceived and designed research. MRZ, RSA, and SI conducted experiments. SI, NA, ZJMQ, and BP conducted analysis and participated in interpreting the data. MRZ and RSA drafted and revised the manuscript.

Corresponding author

Correspondence to Sid-Ahmed Rezzoug.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read the manuscript and expressed their consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maache-Rezzoug, Z., Semhaoui, I., Maugard, T. et al. Enhancing enzymatic hydrolysis of industrial hemp hurds (Cannabis sativa L.) by combination of soaking in dilute acid and steam pretreatment. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04392-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04392-6

Keywords

Navigation