Skip to main content
Log in

Removal of chromate from water samples by cationic cellulose

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, cellulose with quaternary ammonium functions was prepared and utilized to remove Cr(VI) from aqueous solutions and water samples from plating baths. Batch sorption tests conducted with aqueous solutions revealed that the removal of Cr(VI) was rapid, completing in just 3 min. Cr(VI) sorption was pH dependent, exhibiting a low removal rate at acidic pH levels and increasing with the solution pH. Within the pH range of 6–10, up to 99% of Cr(VI) could be removed from the solution. The optimum conditions identified were applied to an actual plating bath water sample, resulting in 99% of Cr(VI) removal from the solution. The maximum sorption capacity of the prepared sorbents was 32.68 mg/g. The removal rate of Cr(VI) changed by only 1% at low coexistence of ions (namely Cl, SO42−, PO43, and NO3), but it decreased by 14% to 45% when concentrations increased from 5 to 100 mg/L. Thermodynamic studies revealed that Cr(VI) sorption was both spontaneous and exothermic. The exhausted sorbent can regenerate completely with 1 M HCl or H2SO4 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Arora M, Kiran B, Rani S et al (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111:811–815. https://doi.org/10.1016/j.foodchem.2008.04.049

    Article  Google Scholar 

  2. Rani L, Kaushal J, Lal Srivastav A (2022) Biochar as sustainable adsorbents for chromium ion removal from aqueous environment: a review. Biomass Convers Biorefinery 1:1–14. https://doi.org/10.1007/s13399-022-02784-8

    Article  Google Scholar 

  3. Bayuo J (2021) An extensive review on chromium (vi) removal using natural and agricultural wastes materials as alternative biosorbents. J Environ Heal Sci Eng 19:1193–1207. https://doi.org/10.1007/s40201-021-00641-w

    Article  Google Scholar 

  4. Viti C, Marchi E, Decorosi F, Giovannetti L (2014) Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev 38:633–659. https://doi.org/10.1111/1574-6976.12051

    Article  Google Scholar 

  5. Kuanar A, Kabi SK, Rath M et al (2022) A Comparative Review on Bioremediation of Chromium by Bacterial, Fungal, Algal and Microbial Consortia. Geomicrobiol J 39:515–530. https://doi.org/10.1080/01490451.2022.2035019

    Article  Google Scholar 

  6. Garg SK, Tripathi M, Srinath T (2012) Strategies for Chromium Bioremediation of Tannery Effluent. Reviews of Environmental Contamination and Toxicology. Springer, Boston, MA, pp 75–140

    Google Scholar 

  7. Mukherjee K, Saha R, Ghosh A, Saha B (2013) Chromium removal technologies. Res Chem Intermed 39:2267–2286. https://doi.org/10.1007/s11164-012-0779-3

    Article  Google Scholar 

  8. Vincent JB (2010) Chromium: celebrating 50 years as an essential element? Dalt Trans 39:3787. https://doi.org/10.1039/b920480f

    Article  Google Scholar 

  9. GracePavithra K, Jaikumar V, Kumar PS, SundarRajan P (2019) A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J Clean Prod 228:580–593. https://doi.org/10.1016/j.jclepro.2019.04.117

    Article  Google Scholar 

  10. Lapenna D, Ciofani G (2020) Chromium and human low-density lipoprotein oxidation. J Trace Elem Med Biol 59:126411. https://doi.org/10.1016/j.jtemb.2019.126411

    Article  Google Scholar 

  11. Qian J, Zhou J, Wang L et al (2017) Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chem Eng J 309:330–338. https://doi.org/10.1016/j.cej.2016.10.077

    Article  Google Scholar 

  12. Azeez NA, Dash SS, Gummadi SN, Deepa VS (2021) Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. Chemosphere 266:129204. https://doi.org/10.1016/j.chemosphere.2020.129204

    Article  Google Scholar 

  13. Liang J, Huang X, Yan J et al (2021) A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. Sci Total Environ 774:145762. https://doi.org/10.1016/j.scitotenv.2021.145762

    Article  Google Scholar 

  14. Fathima NN, Aravindhan R, Rao JR, Nair BU (2005) Solid Waste Removes Toxic Liquid Waste: Adsorption of Chromium(VI) by Iron Complexed Protein Waste. Environ Sci Technol 39:2804–2810. https://doi.org/10.1021/es0499389

    Article  Google Scholar 

  15. Sharma SK, Petrusevski B, Amy G (2008) Chromium removal from water: a review. J Water Supply Res Technol 57:541–553. https://doi.org/10.2166/aqua.2008.080

    Article  Google Scholar 

  16. Ukhurebor KE, Aigbe UO, Onyancha RB et al (2021) Effect of hexavalent chromium on the environment and removal techniques: A review. J Environ Manage 280:111809. https://doi.org/10.1016/j.jenvman.2020.111809

    Article  Google Scholar 

  17. Almeida JC, Cardoso CED, Tavares DS et al (2019) Chromium removal from contaminated waters using nanomaterials – A review. TrAC Trends Anal Chem 118:277–291. https://doi.org/10.1016/j.trac.2019.05.005

    Article  Google Scholar 

  18. Aigbe UO, Osibote OA (2020) A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. J Environ Chem Eng 8:104503. https://doi.org/10.1016/j.jece.2020.104503

    Article  Google Scholar 

  19. Qiu B, Xu C, Sun D et al (2014) Polyaniline Coated Ethyl Cellulose with Improved Hexavalent Chromium Removal. ACS Sustain Chem Eng 2:2070–2080. https://doi.org/10.1021/sc5003209

    Article  Google Scholar 

  20. Jamshaid A, Hamid A, Muhammad N et al (2017) Cellulose-based Materials for the Removal of Heavy Metals from Wastewater – An Overview. ChemBioEng Rev 4:240–256. https://doi.org/10.1002/cben.201700002

    Article  Google Scholar 

  21. Qiu B, Guo J, Zhang X et al (2014) Polyethylenimine Facilitated Ethyl Cellulose for Hexavalent Chromium Removal with a Wide pH Range. ACS Appl Mater Interfaces 6:19816–19824. https://doi.org/10.1021/am505170j

    Article  Google Scholar 

  22. Zhu G, Wang Y, Tan X et al (2022) Synthesis of cellulose II-based spherical nanoparticle microcluster adsorbent for removal of toxic hexavalent chromium. Int J Biol Macromol 221:224–237. https://doi.org/10.1016/j.ijbiomac.2022.09.016

    Article  Google Scholar 

  23. Arar Ö (2019) Preparation of anion-exchange cellulose for the removal of chromate. J Chil Chem Soc 64:. https://doi.org/10.4067/S0717-97072019000204471

  24. Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170. https://doi.org/10.1016/j.carbpol.2012.02.066

    Article  Google Scholar 

  25. Hauser PJ, Tabba AH (2001) Improving the environmental and economic aspects of cotton dyeing using a cationised cotton †. Color Technol 117:282–288. https://doi.org/10.1111/j.1478-4408.2001.tb00076.x

    Article  Google Scholar 

  26. Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14:615–623. https://doi.org/10.1007/s10570-007-9126-z

    Article  Google Scholar 

  27. Clesceri L, Greenberg A and Eaton A (1999) Standard Methods for the Examination of Water and Wastewater

  28. Pigorsch E (2009) Spectroscopic Characterisation of Cationic Quaternary Ammonium Starches. Starch - Stärke 61:129–138. https://doi.org/10.1002/star.200800090

    Article  Google Scholar 

  29. Parlak E, Arar Ö (2018) Removal of copper (Cu2+) from water by sulfonated cellulose. J Dispers Sci Technol 39:1403–1408. https://doi.org/10.1080/01932691.2017.1405818

    Article  Google Scholar 

  30. Silverstein R, Webster F, Kiemle D, Bryce D (2005) Spectrometric identification of organic compounds. John Wiley and Sons, New York

  31. Zhbankov RG (1966) Infrared Spectra of Cellulose and its Derivatives. Springer, US, Boston, MA

    Google Scholar 

  32. Khalatbary M, Sayadi MH, Hajiani M, Nowrouzi M (2022) Adsorption studies on the removal of malachite green by γ-Fe2O3/MWCNTs/Cellulose as an eco-friendly nanoadsorbent. Biomass Convers Biorefinery 1:1–19. https://doi.org/10.1007/s13399-022-02475-4

    Article  Google Scholar 

  33. Yetgin AG, Dündar OA, Çakmakçı E, Arar Ö (2022) Removal of boron from aqueous solution by modified cellulose. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02133-1

    Article  Google Scholar 

  34. Soysüren G, Yetgin AG, Arar Ö, Arda M (2022) Removal of manganese (II) from aqueous solution by ionic liquid impregnated polymeric sorbent and electrodeionization (EDI) techniques. Process Saf Environ Prot 158:189–198. https://doi.org/10.1016/j.psep.2021.11.053

    Article  Google Scholar 

  35. Fu L, Shuang C, Liu F et al (2014) Rapid removal of copper with magnetic poly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange. J Hazard Mater 272:102–111. https://doi.org/10.1016/j.jhazmat.2014.02.047

    Article  Google Scholar 

  36. Sengupta S, Sengupta AK (2002) Trace Heavy Metal Separation by Chelating Ion Exchangers. In: SenGupta AK (ed) Environmental Separation of Heavy Metals: Engineered Processes, First. CRC Press, Boca Raton, Florida, pp 45–96

    Google Scholar 

  37. Dündar OA, Mehenktaş C, Arar Ö (2022) Removal of Antimony(III) and Antimony(V) from water samples through water-soluble polymer-enhanced ultrafiltration. Environ Res 215:114324. https://doi.org/10.1016/j.envres.2022.114324

    Article  Google Scholar 

  38. Zhang Y, Xu L, Zhao L et al (2012) Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent. Carbohydr Polym 88:931–938. https://doi.org/10.1016/j.carbpol.2012.01.040

    Article  Google Scholar 

  39. Li Y, Zhu H, Zhang C et al (2018) PEI-grafted magnetic cellulose for Cr(VI) removal from aqueous solution. Cellulose 25:4757–4769. https://doi.org/10.1007/s10570-018-1868-2

    Article  Google Scholar 

  40. Hajeeth T, Sudha PN, Vijayalakshmi K, Gomathi T (2014) Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer. Int J Biol Macromol 66:295–301. https://doi.org/10.1016/j.ijbiomac.2014.02.027

    Article  Google Scholar 

  41. Yu T, Liu S, Xu M et al (2016) Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal. Radiat Phys Chem 125:94–101. https://doi.org/10.1016/j.radphyschem.2016.03.019

    Article  Google Scholar 

  42. Mohamed SH, Hossain MS, Kassim MHM et al (2022) Biosorption of Cr(VI) Using Cellulose Nanocrystals Isolated from the Waterless Pulping of Waste Cotton Cloths with Supercritical CO2: Isothermal, Kinetics, and Thermodynamics Studies. Polymers (Basel) 14:887. https://doi.org/10.3390/polym14050887

    Article  Google Scholar 

  43. Su K, Zhao D, Lu A et al (2022) One-pot green synthesis of poly(hexamethylenediamine-tannic acid)-bacterial cellulose composite for the reduction, immobilization, and recovery of Cr(VI). J Environ Chem Eng 10:107026. https://doi.org/10.1016/j.jece.2021.107026

    Article  Google Scholar 

  44. ErdemYayayürük A, Yayayürük O (2017) Adsorptive performance of nanosized zero-valent iron for V(V) removal from aqueous solutions. J Chem Technol Biotechnol 92:1891–1898. https://doi.org/10.1002/jctb.5209

    Article  Google Scholar 

  45. Wang X, Xu J, Liu J et al (2020) Mechanism of Cr(VI) removal by magnetic greigite/biochar composites. Sci Total Environ 700:134414. https://doi.org/10.1016/j.scitotenv.2019.134414

    Article  Google Scholar 

  46. Huang D, Liu C, Zhang C et al (2019) Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid. Bioresour Technol 276:127–132. https://doi.org/10.1016/j.biortech.2018.12.114

    Article  Google Scholar 

  47. Tan LN, Nguyen NCT, Trinh AMH et al (2023) Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(VI) removal. Sep Purif Technol 304:122415. https://doi.org/10.1016/j.seppur.2022.122415

    Article  Google Scholar 

  48. ErdemYayayürük A, Yayayürük O, Tukenmez E, Karagoz B (2019) Polystyrene-divinyl benzene microspheres with amino methyl phosphonic acid functional hairy brushes for the sorption and speciation of chromium prior to inductively coupled plasma mass spectrometric determination. Microchim Acta 186:571. https://doi.org/10.1007/s00604-019-3635-y

    Article  Google Scholar 

  49. Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536. https://doi.org/10.1016/j.watres.2005.05.051

    Article  Google Scholar 

  50. dos Santos Azevedoeite V, de Jesus BGL, de Oliveira Duarte VG et al (2019) Determination of chromium (VI) by dispersive solid-phase extraction using dissolvable Zn-Al layered double hydroxide intercalated with l-Alanine as adsorbent. Microchem J 146:650–657. https://doi.org/10.1016/j.microc.2019.01.06351

    Article  Google Scholar 

  51. Selvi K (2001) Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol 80:87–89. https://doi.org/10.1016/S0960-8524(01)00068-2

    Article  Google Scholar 

  52. Baylan N (2020) Removal of levulinic acid from aqueous solutions by clay nano-adsorbents: equilibrium, kinetic, and thermodynamic data. Biomass Convers Biorefinery 10:1291–1300. https://doi.org/10.1007/s13399-020-00744-8

    Article  Google Scholar 

  53. Güzel F, Koyuncu F (2021) Adsorptive removal of diclofenac sodium from aqueous solution via industrial processed citrus solid waste–based activated carbon: optimization, kinetics, equilibrium, thermodynamic, and reusability analyses. Biomass Convers Biorefinery 1:1–12. https://doi.org/10.1007/s13399-021-01969-x

    Article  Google Scholar 

  54. Arar Ö (2016) Shallow Shell resin versus traditional resin: A case study for Cu(II) removal. Anadolu Univ J Sci Technol Appl Sci Eng 17:530–542. https://doi.org/10.18038/btda.05967

    Article  Google Scholar 

  55. Jiang C, Sun R, Du Z et al (2020) A cationic Zr-based metal organic framework with enhanced acidic resistance for selective and efficient removal of CrO 4 2−. New J Chem 44:12646–12653. https://doi.org/10.1039/D0NJ02279A

    Article  Google Scholar 

  56. Kong Z, Wei J, Li Y et al (2014) Rapid removal of Cr(VI) ions using quaternary ammonium fibers functioned by 2-(dimethylamino)ethyl methacrylate and modified with 1-bromoalkanes. Chem Eng J 254:365–373. https://doi.org/10.1016/j.cej.2014.05.128

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks Denkim Kimya A.Ş. for providing the cellulose samples. We are grateful to Ege University Planning and Monitoring Coordination of Organizational Development and Directorate of Library and Documentation for their support in editing and proofreading this paper. Authors thanks Ekrem Kandemir and Kandemir Copy Center for the preparing production-quality figures.

Funding

This study is supported by the Ege University Scientific Research Projects Coordination Unit (Project Number: 18-FEN-044).

Author information

Authors and Affiliations

Authors

Contributions

Ebru Sarıoğlu: investigation; Cesur Mehenktaş: investigation, writing original draft; Özgür Arar: funding acquisition, project administration, writing – original draft, writing – review and editing, investigation.

Corresponding author

Correspondence to Özgür Arar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıoğlu, E., Mehenktaş, C. & Arar, Ö. Removal of chromate from water samples by cationic cellulose. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04292-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04292-9

Keywords

Navigation