Skip to main content

Advertisement

Log in

Efficient cadmium removal from industrial phosphoric acid using banana pseudostem-derived biochar

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The slowed adsorption kinetics caused by the constricted pore shape of adsorbents is a significant obstacle in heavy metal ion adsorption. In order to develop effective and environmentally friendly adsorbents for the removal of heavy metal ions, particularly from phosphoric acid medium, novel resources are needed. Biochar, generated from waste biomass as a low-cost and non-toxic material, is currently attracting a great deal of interest as a potential solution. In this study, banana pseudostem was selected and pyrolyzed at 650°C to evaluate its effect on cadmium adsorption. The resulting biochar was characterized in terms of its structural, physical, morphological, and thermal properties to determine its physicochemical features. The biochar’s adsorption efficiency towards Cd removal from industrial phosphoric acid was also evaluated through a series of batch experiments by varying different parameters, including contact time (30-60-180 min), temperature (298.15-308.15-318.15 K), and adsorbent amount (0.05-0.1-0.15-0.2 g). Results from ICP measurements showed that the removal rate of Cd decreased when both time and biochar dosage increased, while temperature had little effect on the extraction process. The biochar was most effective with a removal rate of 12.5 mg/g at 308.15 K by adding 50 mg of biochar for 30 min. These findings suggest that biochar derived from banana pseudostem is a promising biosorbent for Cd removal from industrial phosphoric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jin Y, Ma Y, Weng Y et al (2014) Solvent extraction of Fe 3 + from the hydrochloric acid route phosphoric acid by D2EHPA in kerosene. J Ind Eng Chem 2:2–8. https://doi.org/10.1016/j.jiec.2013.12.033

    Article  Google Scholar 

  2. Cheira MF, Rashed MN, Mohamed AE et al (2019) Removal of some harmful metal ions from wet-process phosphoric acid using murexide-reinforced activated bentonite. Mater Today Chem 14:100176. https://doi.org/10.1016/j.mtchem.2019.06.002

    Article  Google Scholar 

  3. Gilmour RB (2019) Phosphoric acids and phosphates in encyclopedia of chemical technology, Kirk-Othmer, Ed. Michigan: Wiley. https://doi.org/10.1002/0471238961.1608151907011804.a01.pub3

  4. Ahmed H, Diamonta H, Chaker C, Abdelhamid R (2007) Purification of wet process phosphoric acid by solvent extraction with TBP and MIBK mixtures. Sep Purif Technol 55:212–216. https://doi.org/10.1016/j.seppur.2006.12.014

    Article  Google Scholar 

  5. Kouzbour S, Gourich B, Gros F, Vial C, Allam F, Stiriba Y (2019) Comparative analysis of industrial processes for cadmium removal from phosphoric acid : a review. Hydrometallurgy 188:222–247. https://doi.org/10.1016/j.hydromet.2019.06.014

    Article  Google Scholar 

  6. Mellah A, Benachour D (2007) The solvent extraction of zinc, cadmium and chromium from phosphoric acid solutions by tri-n butyl phosphate in kerosene diluent. Sep Purif Technol 56:220–224. https://doi.org/10.1016/j.seppur.2007.01.037

    Article  Google Scholar 

  7. Lizon TG (1998) Cadmium separation from phosphoric acid using the emulsion, University of London

  8. Dantas TNC, Neto AAD, Moura MCPA et al (2003) Heavy metals extraction by microemulsions. Water Res 37:2709–2717. https://doi.org/10.1016/S0043-1354(03)00072-1

    Article  Google Scholar 

  9. Shin W seok (2017) Adsorption characteristics of phenol and heavy metals on biochar from Hizikia fusiformis. Environ Earth Sci 76:1–9. https://doi.org/10.1007/s12665-017-7125-4

  10. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2016) Removal of heavy metals from industrial wastewaters : a review. ChemBioEng Rev 4(1):37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  11. Bahadur V, Gadi R, Kalra S (2019) Clay based nanocomposites for removal of heavy metals from water : a review. J Environ Manage 232:803–817. https://doi.org/10.1016/j.jenvman.2018.11.120

    Article  Google Scholar 

  12. Singh E, Kumar A, Mishra R et al (2021) Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour Technol 320:124278. https://doi.org/10.1016/j.biortech.2020.124278

    Article  Google Scholar 

  13. Witek-krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. DES 265:126–134. https://doi.org/10.1016/j.desal.2010.07.042

    Article  Google Scholar 

  14. Purkayastha D, Mishra U, Biswas S (2014) A comprehensive review on Cd ( II ) removal from aqueous solution. J Water Process Eng 2:105–128. https://doi.org/10.1016/j.jwpe.2014.05.009

    Article  Google Scholar 

  15. Zhang Z, Li Y, Zong Y et al (2022) Efficient removal of cadmium by salts modified-biochar: performance assessment, theoretical calculation, and quantitative mechanism analysis. Bioresour Technol 361:127717. https://doi.org/10.1016/j.biortech.2022.127717

    Article  Google Scholar 

  16. Teng D, Zhang B, Xu G et al (2020) Efficient removal of Cd (II) from aqueous solution by pinecone biochar: sorption performance and governing mechanisms. Environ Pollut 265:115001. https://doi.org/10.1016/j.envpol.2020.115001

    Article  Google Scholar 

  17. Zieliński J, Huculak-Mączka M, Kaniewski M, Nieweś D, Hoffmann K, Hoffmann J (2019) Kinetic modelling of cadmium removal from wet phosphoric acid by precipitation method. Hydrometallurgy 190:105157. https://doi.org/10.1016/j.hydromet.2019.105157

    Article  Google Scholar 

  18. Lopez JG, Barnhart VJ (1983) US patent document 4402920

  19. Taha MH, Masoud AM, Khawassek YM et al (2020) Cadmium and iron removal from phosphoric acid using commercial resins for purification purpose. Environ Sci Pollut Res 27:31278–31288. https://doi.org/10.1007/s11356-020-09342-7

    Article  Google Scholar 

  20. Berkalou K, Nounah A, Khamar M, Boussen Ratiba, Cherkaoui E (2020). Extraction of cadmium from phosphoric acid by a synthesized extracting agent. E3S Web of Conferences. 150:02007. https://doi.org/10.1051/e3sconf/202015002007

  21. Mecibah W, Delimi R, Gabli M (2012) Elimination du cadmium de l’acide phosphorique par électrodialyse. Synthèse Rev des Sci la Technol 24:84–90

    Google Scholar 

  22. Park Y, Kim K (2021) Selective separation of various heavy metals from synthesized phosphoric acid solutions. J Ind Eng Chem 95:267–276. https://doi.org/10.1016/j.jiec.2020.12.032

    Article  Google Scholar 

  23. Malandrino M, Abollino O, Giacomino A et al (2006) Adsorption of heavy metals on vermiculite : influence of pH and organic ligands. J Colloid Interface Sci 299:537–546. https://doi.org/10.1016/j.jcis.2006.03.011

    Article  Google Scholar 

  24. Wang H, Huang F, Zhao Z et al (2021) High-efficiency removal capacities and quantitative adsorption mechanisms of Cd 2 þ by thermally modi fi ed biochars derived from different feedstocks. Chemosphere 272:129594. https://doi.org/10.1016/j.chemosphere.2021.129594

    Article  Google Scholar 

  25. Soliman NK, Moustafa AF (2020) Industrial solid waste for heavy metals adsorption features and challenges; a review. J Mater Res Technol 9:10235–10253. https://doi.org/10.1016/j.jmrt.2020.07.045

    Article  Google Scholar 

  26. Raji M, Halloub A, el Kacem QA, Bouhfid R (2023) Bioplastic-based nanocomposites for smart materials. In: Inamuddin TA (ed) Handbook of Bioplastics and Biocomposites Engineering Applications, 2nd edn. Wiley, pp 457–470

    Chapter  Google Scholar 

  27. Abdul G, Zhu X, Chen B (2017) Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem Eng J 319:9–20. https://doi.org/10.1016/j.cej.2017.02.074

    Article  Google Scholar 

  28. Chakhtouna H, El Allaoui B, Zari N et al (2022) Bio-inspired polymers as organic electrodes for batteries. Emg Mater:189–206. https://doi.org/10.1007/978-3-030-98021-4_11

  29. Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An Assessment of U ( VI ) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manage 92:2504–2512. https://doi.org/10.1016/j.jenvman.2011.05.013

    Article  Google Scholar 

  30. Chakhtouna H, El M, Mekhzoum M, Zari N (2021) Biochar-supported materials for wastewater treatment. In: Inamuddin TAR, Ahamed MI, Boddula R (eds) Applied Water Science Volume 1: Fundamentals and Applications, Wiley, pp 199–225. https://doi.org/10.1002/9781119725237.ch7

  31. Wang S, Zhang H, Huang H et al (2020) Influence of temperature and residence time on characteristics of biochars derived from agricultural residues : a comprehensive evaluation. Process Saf Environ Prot 139:218–229. https://doi.org/10.1016/j.psep.2020.03.028

    Article  Google Scholar 

  32. Othmani A, John J, Rajendran H et al (2021) Biochar and activated carbon derivatives of lignocellulosic fibers towards adsorptive removal of pollutants from aqueous systems: critical study and future insight. Sep Purif Technol 274:119062. https://doi.org/10.1016/j.seppur.2021.119062

    Article  Google Scholar 

  33. Patra JM, Panda SS, Dhal NK (2017) Biochar as a low-cost adsorbent for heavy metal removal : a review. Int J Res Biosci 6:1–7

    Google Scholar 

  34. Pyrzynska K (2019) Removal of cadmium from wastewaters with low-cost adsorbents. J Environ Chem Eng 7:102795. https://doi.org/10.1016/j.jece.2018.11.040

    Article  Google Scholar 

  35. Ameen Hezam Saeed A, Yub Harun N, Mahmoud Nasef M et al (2022) Removal of cadmium from aqueous solution by optimized rice husk biochar using response surface methodology. Ain Shams Eng J 13:101516. https://doi.org/10.1016/j.asej.2021.06.002

    Article  Google Scholar 

  36. Niazi L, Lashanizadegan A, Sharififard H (2018) Chestnut oak shells activated carbon: preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J Clean Prod 85:554–561. https://doi.org/10.1016/j.jclepro.2018.03.026

    Article  Google Scholar 

  37. Qiu B, Shao Q, Shi J et al (2022) Application of biochar for the adsorption of organic pollutants from wastewater: modification strategies, mechanisms and challenges. Sep Purif Technol 300:121925. https://doi.org/10.1016/j.seppur.2022.121925

    Article  Google Scholar 

  38. Liu X, Li G, Chen C et al (2022) Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution. Sci Rep 12:1–14. https://doi.org/10.1038/s41598-022-05652-7

    Article  Google Scholar 

  39. Ding E, Jiang J, Lan Y et al (2023) Optimizing Cd2+ adsorption performance of KOH modified biochar adopting response surface methodology. J Anal Appl Pyrolysis 169:105788. https://doi.org/10.1016/j.jaap.2022.105788

    Article  Google Scholar 

  40. Li Y, Xing B, Ding Y et al (2020) A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour Technol 312:123614. https://doi.org/10.1016/j.biortech.2020.123614

    Article  Google Scholar 

  41. Melia PM, Busquets R, Ray S, Cundy AB (2018) Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water. RSC Adv 8:40378–40386. https://doi.org/10.1039/C8RA07877G

    Article  Google Scholar 

  42. Huang K, Hu C, Tan Q et al (2022) Highly efficient removal of cadmium from aqueous solution by ammonium polyphosphate-modified biochar. Chemosphere 305:135471. https://doi.org/10.1016/j.chemosphere.2022.135471

    Article  Google Scholar 

  43. Zhang P, Xue B, Jiao L et al (2022) Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. Sci Total Environ 813:152648. https://doi.org/10.1016/j.scitotenv.2021.152648

    Article  Google Scholar 

  44. Chakhtouna H, Benzeid H, Zari N et al (2021) Functional CoFe2O4-modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. Sep Purif Technol 266:118592. https://doi.org/10.1016/j.seppur.2021.118592

    Article  Google Scholar 

  45. Chakhtouna H, Benzeid H, Zari N et al (2023) Microwave-assisted synthesis of MIL–53(Fe)/biochar composite from date palm for ciprofloxacin and ofloxacin antibiotics removal. Sep Purif Technol 308:122850. https://doi.org/10.1016/j.seppur.2022.122850

    Article  Google Scholar 

  46. Zbair M, El Hadrami A, Bellarbi A et al (2020) Herbicide diuron removal from aqueous solution by bottom ash: kinetics, isotherm, and thermodynamic adsorption studies. J Environ Chem Eng 8:103667. https://doi.org/10.1016/j.jece.2020.103667

    Article  Google Scholar 

  47. Cecci RRR, Passos AA, de Aguiar Neto TC, Silva LA (2020) Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. SN Appl Sci 2:1–6. https://doi.org/10.1007/s42452-019-1790-8

    Article  Google Scholar 

  48. Das D, Hussain S, Ghosh AK, Pal AK (2018) Studies on cellulose nanocrystals extracted from Musa sapientum: structural and bonding aspects. Cellul Chem Technol 52:729–739

    Google Scholar 

  49. Rahman MW, Nipa ST, Rima SZ et al (2022) Pseudo-stem banana fiber as a potential low-cost adsorbent to remove methylene blue from synthetic wastewater. Appl Water Sci 12:1–16. https://doi.org/10.1007/s13201-022-01769-2

    Article  Google Scholar 

  50. Xu S, Yu W, Liu S et al (2018) Adsorption of hexavalent chromium using banana pseudostem biochar and its mechanism. Sustain 10:4250. https://doi.org/10.3390/su10114250

    Article  Google Scholar 

  51. Wu Q, Xian Y, He Z et al (2019) Adsorption characteristics of Pb ( II ) using biochar derived from spent mushroom substrate. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-52554-2

    Article  Google Scholar 

  52. Luo M, Lin H, Li B et al (2018) A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour Technol 259:312–318. https://doi.org/10.1016/j.biortech.2018.03.075

    Article  Google Scholar 

  53. Liu L, Fan S (2018) Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism. Environ Sci Pollut Res 25:8688–8700. https://doi.org/10.1007/s11356-017-1189-2

    Article  MathSciNet  Google Scholar 

  54. Dong X, Ma LQ, Li Y (2011) Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J Hazard Mater 190:909–915. https://doi.org/10.1016/j.jhazmat.2011.04.008

    Article  Google Scholar 

  55. Han X, Liang CF, Li TQ et al (2013) Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. J Zhejiang Univ Sci B 14:640–649. https://doi.org/10.1631/jzus.B1200353

    Article  Google Scholar 

  56. Waweru P, Mukono ST, Ndung’u PW et al (2019) Evaluating the surface functional groups on banana leaf petioles and the resultant biochar for potential adsorbance Waweru Ndung’u et al Evaluating the surface functional groups on banana leaf petioles and the resultant biochar for potential adsorbance. J Mater Environ Sci 10:255–261

    Google Scholar 

  57. Elnour AY, Alghyamah AA, Shaikh HM et al (2019) Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl Sci 9:7–9. https://doi.org/10.3390/app9061149

    Article  Google Scholar 

  58. Zhao SX, Ta N, Wang XD (2017) Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10. https://doi.org/10.3390/en10091293

  59. Segal L, Creely JJ, Martin AE, Conrad CM (1958) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J:786–794

  60. Alma MH (2010) Pyrolysis of laurel ( Laurus nobilis L .) extraction residues in a fixed-bed reactor : characterization of bio-oil and bio-char Murat Ertas. J Anal Appl Pyrolysis 88:22–29. https://doi.org/10.1016/j.jaap.2010.02.006

    Article  Google Scholar 

  61. Kołodyńska D, Bąk J, Kozioł M, Pylypchuk LV (2017) Investigations of heavy metal ion sorption using nanocomposites of iron-modified biochar. Nanoscale Res Lett 12. https://doi.org/10.1186/s11671-017-2201-y

  62. Khan ZH, Gao M, Qiu W et al (2020) Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere 246:125701. https://doi.org/10.1016/j.chemosphere.2019.125701

    Article  Google Scholar 

  63. Goswami R, Shim J, Deka S et al (2016) Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures. Ecol Eng 97:444–451. https://doi.org/10.1016/j.ecoleng.2016.10.007

    Article  Google Scholar 

  64. Paris O, Zollfrank C, Zickler GA (2005) Decomposition and carbonisation of wood biopolymers — a microstructural study of softwood pyrolysis. Carbon N Y 43:53–66. https://doi.org/10.1016/j.carbon.2004.08.034

    Article  Google Scholar 

  65. Shahed M, Khan H, Mahinpey N et al (2011) Production , characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw. Biomass Bioenergy 37:97–105. https://doi.org/10.1016/j.biombioe.2011.12.027

    Article  Google Scholar 

  66. Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG, Labbé N (2011) Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuel:4693–4703

  67. Chen Z, Chen B, Zhou D, Chen W (2012) Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. J Environ Sci Technol 46(22):12476–12483

    Article  Google Scholar 

  68. Ahmad M, Soo S, Dou X et al (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  Google Scholar 

  69. Zhou R, Zhang M, Shao S (2022) Optimization of target biochar for the adsorption of target heavy metal ion. Sci Rep 12:1–17. https://doi.org/10.1038/s41598-022-17901-w

    Article  Google Scholar 

  70. Enders A, Hanley K, Whitman T et al (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. https://doi.org/10.1016/j.biortech.2012.03.022

    Article  Google Scholar 

  71. Ho K, Kim J, Cho T, Weon J (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine ( Pinus rigida ). Bioresour Technol 118:158–162. https://doi.org/10.1016/j.biortech.2012.04.094

    Article  Google Scholar 

  72. Kim Y, Oh J, Vithanage M et al (2019) Modification of biochar properties using CO 2. Chem Eng J 372:383–389. https://doi.org/10.1016/j.cej.2019.04.170

    Article  Google Scholar 

  73. Kwoczynski Z, Čmelík J (2020) Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J Clean Prod 280:124302. https://doi.org/10.1016/j.jclepro.2020.124302

    Article  Google Scholar 

  74. Semlali Aouragh Hassani FZ, El Bourakadi K, Merghoub N et al (2020) Effect of chitosan/modified montmorillonite coating on the antibacterial and mechanical properties of date palm fiber trays. Int J Biol Macromol 148:316–323. https://doi.org/10.1016/j.ijbiomac.2020.01.092

    Article  Google Scholar 

  75. Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133. https://doi.org/10.1016/j.chemosphere.2009.02.004

    Article  Google Scholar 

  76. Lee JW, Kidder M, Evans BR, Paik S, Buchanan Iii AC, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. J Environ Sci Technol 44:7970–7974

    Article  Google Scholar 

  77. Halloub A, Raji M, Essabir H et al (2022) Intelligent food packaging film containing lignin and cellulose nanocrystals for shelf life extension of food. Carbohydr Polym 296:119972. https://doi.org/10.1016/j.carbpol.2022.119972

    Article  Google Scholar 

  78. Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493. https://doi.org/10.1016/j.biortech.2013.07.086

    Article  Google Scholar 

  79. Zahra F, Aouragh S, Ouarhim W et al (2019) N - silylated benzothiazolium dye as a coupling agent for polylactic acid / date palm fiber bio - composites. J Polym Environ. https://doi.org/10.1007/s10924-019-01585-x

  80. Domingues RR, Trugilho PF, Silva CA, de ICNA, Melo LCA, Melo ZM, Magriotis MAS-M (2017) Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS One 12:1–19. https://doi.org/10.1371/journal.pone.0176884

    Article  Google Scholar 

  81. Al-Khanbashi A, Al-Kaabi K, Hammami A (2005) Date palm fibers as polymeric matrix reinforcement : fiber characterization. J Polym Compos 26(4):486–497. https://doi.org/10.1002/pc.20118

    Article  Google Scholar 

  82. Azargohar R, Nanda S, Kozinski JA et al (2014) Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125:90–100. https://doi.org/10.1016/j.fuel.2014.01.083

    Article  Google Scholar 

  83. Aydın H, Bulut Y (2008) Removal of copper ( II ) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manage 87:37–45. https://doi.org/10.1016/j.jenvman.2007.01.005

    Article  Google Scholar 

  84. Padmavathy KS, Madhu G, Haseena PV (2016) A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles. Procedia Technol 24:585–594. https://doi.org/10.1016/j.protcy.2016.05.127

    Article  Google Scholar 

  85. Ezeonuegbu BA, Machido DA, Whong CMZ et al (2021) Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol Reports 30:e00614. https://doi.org/10.1016/j.btre.2021.e00614

    Article  Google Scholar 

  86. Uluozlu OD, Sarı A, Tuzen M (2010) Biosorption of antimony from aqueous solution by lichen ( Physcia tribacia ) biomass. Chem Eng J 163:382–388. https://doi.org/10.1016/j.cej.2010.08.022

    Article  Google Scholar 

  87. Al-Ghouti MA, Al-Absi RS (2020) Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci Rep 10:1–18. https://doi.org/10.1038/s41598-020-72996-3

    Article  Google Scholar 

  88. Zubair A, Bhatti HN (2008) Kinetic and equilibrium modeling for Cr ( III ) and Cr ( VI ) removal from aqueous solutions by Citrus reticulata waste biomass. Water Air Soil Pollut 305–318. https://doi.org/10.1007/s11270-008-9626-y

  89. Aksu Z (2001) Equilibrium and kinetic modelling of cadmium ( II ) biosorption by C . 6 ulgaris in a batch system : effect of temperature. Sep Purif Technol 21:285–294

    Article  Google Scholar 

  90. Lim LBL, Priyantha N, Lu YC, Mohamad Zaidi NAH (2019) Adsorption of heavy metal lead using Citrus grandis (Pomelo) leaves as low-cost adsorbent. Desalin Water Treat 166:44–52. https://doi.org/10.5004/dwt.2019.24620

    Article  Google Scholar 

  91. Naseem K, Huma R, Shahbaz A et al (2019) Extraction of heavy metals from aqueous medium by husk biomass: adsorption isotherm, kinetic and thermodynamic study. Zeitschrift fur Phys Chemie 233:201–223. https://doi.org/10.1515/zpch-2018-1182

    Article  Google Scholar 

  92. Chen H, Li W, Wang J et al (2019) Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: selective adsorption and influence of dissolved organic matter. Bioresour Technol 292:121948. https://doi.org/10.1016/j.biortech.2019.121948

    Article  Google Scholar 

  93. Liu T, Lawluvy Y, Shi Y et al (2022) Adsorption of cadmium and lead from aqueous solution using modified biochar: a review. J Environ Chem Eng 10:106502. https://doi.org/10.1016/j.jece.2021.106502

    Article  Google Scholar 

  94. Li H, Dong X, da Silva EB et al (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  Google Scholar 

  95. Ding Y, Liu Y, Liu S et al (2016) Competitive removal of Cd (II) and Pb (II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv 6:5223–5232. https://doi.org/10.1039/c5ra26248h

    Article  Google Scholar 

  96. Cui X, Fang S, Yao Y et al (2016) Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci Total Environ 562:517–525. https://doi.org/10.1016/j.scitotenv.2016.03.248

    Article  Google Scholar 

  97. Usman A, Sallam A, Zhang M, Vithanage M (2016) Sorption process of date palm biochar for aqueous Cd ( II ) removal : efficiency and mechanisms. Water Air Soil Pollut 227:1–6. https://doi.org/10.1007/s11270-016-3161-z

    Article  Google Scholar 

  98. Li F, Shen K, Long X et al (2016) Preparation and characterization of biochars from eichornia crassipes for cadmium removal in aqueous solutions. PloS One 11:7–9. https://doi.org/10.1371/journal.pone.0148132

    Article  Google Scholar 

  99. Jazini R, Soleimani M, Mirghaffari N (2017) Characterization of barley straw biochar produced in various temperatures and its effect on lead and cadmium removal from aqueous solutions. Water Environ J 00:1–9. https://doi.org/10.1111/wej.12307

    Article  Google Scholar 

  100. Zhi-liang C, Jian-qiang Z, Ling H et al (2019) Removal of Cd and Pb with biochar made from dairy manure at low temperature. J Integr Agric 18:201–210. https://doi.org/10.1016/S2095-3119(18)61987-2

    Article  Google Scholar 

  101. López JE, Builes S, Heredia Salgado MA et al (2020) Adsorption of cadmium using biochars produced from agro-residues. J Phys Chem C 124:14592–14602. https://doi.org/10.1021/acs.jpcc.0c02216

    Article  Google Scholar 

  102. Cui L, Chen T, Yin C et al (2019) Mechanism of adsorption of cadmium and lead ions by iron-activated biochar. BioResources 14:842–857. https://doi.org/10.15376/biores.14.1.842-857

    Article  Google Scholar 

  103. Wang HY, Chen P, Zhu YG et al (2019) Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil. Environ Sci Pollut Res 26:8575–8584. https://doi.org/10.1007/s11356-019-04315-x

    Article  Google Scholar 

  104. Hass A, Lima IM (2018) Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane biochar. Environ Technol Innov 10:16–26. https://doi.org/10.1016/j.eti.2018.01.007

    Article  Google Scholar 

  105. Zhu L, Tong L, Zhao N et al (2020) Key factors and microscopic mechanisms controlling adsorption of cadmium by surface oxidized and aminated biochars. J Hazard Mater 382:121002. https://doi.org/10.1016/j.jhazmat.2019.121002

    Article  Google Scholar 

Download references

Funding

This work was supported by Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) and OCP group.

Author information

Authors and Affiliations

Authors

Contributions

Kenza Bahsaine: conceptualization, data curation, methodology, writing—original draft; Hanane Chakhtouna: conceptualization, data curation, methodology; Mohamed El Mehdi Mekhzoum: writing—original draft; Nadia Zari: supervision, writing—review, and editing; Hanane Benzeid: supervision, writing—review; Abou el kacem Qaiss: validation, supervision; Rachid Bouhfid: writing—review, and editing, validation, supervision.

Corresponding author

Correspondence to Rachid Bouhfid.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahsaine, K., Chakhtouna, H., Mekhzoum, M.E.M. et al. Efficient cadmium removal from industrial phosphoric acid using banana pseudostem-derived biochar. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04130-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04130-y

Keywords

Navigation