Skip to main content
Log in

Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency and Mechanisms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Date palm biochar (BC) was prepared at two pyrolysis temperatures of 300 °C (BC-300) and 700 °C (BC-700) as sorbents for removing Cd from aqueous solutions in batch experiments. The results indicated that Cd removal efficiency was significantly affected by the initial pH (2–7) of aqueous solutions, with the lowest Cd adsorption at initial pH of 2. BC-700 was more effective in removing Cd from aqueous solution than BC-300. The maximum adsorption capacity of 43.58 mg g−1 was observed for BC-700 based on the Langmuir model, which was 1.6 times higher than that of BC-300 (26.96 mg g−1). Mechanistic evidences of Cd sorption onto BCs were identified by using the instrumental techniques of XRD and SEM or predicted from sorption isotherm and kinetic models. The Cd sorption onto BCs followed the pseudo-second order kinetics, suggesting chemisorption as one of the possible mechanisms of Cd interaction with BCs. However, XRD and SEM analyses of BCs before and after Cd sorption indicated that ion exchange and surface complexation could be the controlling mechanisms of Cd adsorption onto BC-300, while precipitation (as CdCO3) could be the operating mechanism of Cd sorption onto BC-700. Date palm waste, therefore, could possibly be converted to BC as an efficient sorbent for removal of Cd from aqueous media. However, the removal efficiency of BCs varies with different pyrolysis temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, M., Moon, D. H., Vithanage, M., Koutsospyros, A., Lee, S. S., Yang, J. E., Lee, S. E., Jeon, C., & Ok, Y. S. (2014). Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. Journal of Chemical Technology and Biotechnology, 89, 150–157.

    Article  CAS  Google Scholar 

  • Al Amry, M., Al-Saikhan, F., & Ayoubi, A. (2011). Toxic effect of Cadmium found in eyeliner to the eye of a 21 year old Saudi woman: a case report. Saudi Pharmaceutical Journal, 19, 269–272.

    Article  Google Scholar 

  • Al-Mikhlafi, A. S. (2010). Groundwater quality of Yemen volcanic terrain and their geological and geochemical controls. Arabian Journal of Geosciences, 3, 193–205.

    Article  CAS  Google Scholar 

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus waste. Bioresource Technology, 131, 374–379.

    Article  CAS  Google Scholar 

  • Al-Wabel, M. I., Usman, A. R. A., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, S., & Al-Omran, A. (2015). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22, 503–511.

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials. (ASTM). (1989). Standard methods for chemical analysis of wood charcoal, ASTM D1762-84. Philadelphia, Pa, USA.

  • Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123, 43–51.

    Article  CAS  Google Scholar 

  • Calvelo Pereira, R., Kaal, J., Camps Arbestain, M., Pardo Lorenzo, R., Aitkenhead, W., Hedley, M., Macías, F., Hindmarsh, J., & Maciá-Agulló, J. A. (2011). Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry, 42, 1331–1342.

    Article  CAS  Google Scholar 

  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochar as soil amendments. Australian Journal of Soil Research, 46, 437–444.

    Article  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102, 8877–8884.

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38, 4649–4655.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72, 243–248.

    Article  CAS  Google Scholar 

  • Ding, W., Dong, X., Ime, I. M., Gao, B., & Mad, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74.

    Article  CAS  Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Colloid Interface Science, 280, 309–314.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Chiu, W. T., & Wang, C. C. (2005). Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresource Technology, 96, 1285–1291.

    Article  CAS  Google Scholar 

  • Hong, H. J., Kim, H., Lee, Y. J., & Yang, J. W. (2009). Removal of anionic contaminants by surfactant modified powdered activated carbon (SM-PAC) combined with ultrafiltration. Journal of Hazardous Materials, 170, 1242–1246.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50–56.

    Article  CAS  Google Scholar 

  • Kim, W.-K., Shim, T., Kim, Y.-S., Hyun, S., Ryu, C., Park, Y.-K., & Jung, J. (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, 266–270.

    Article  CAS  Google Scholar 

  • Kołodynska, D., Wnetrzak, R., Leahy, J. J., Hayes, M. H. B., Kwapinski, W., & Hubicki, Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295–305.

    Article  Google Scholar 

  • Kong, J., Kong, M., Zhang, X., Chen, L., & An, L. (2013). Magnetoceramics from the bulk pyrolysis of polysilazane cross linked by polyferrocenylcarbosilanes with hyper branched topology. Applied Materials & Interfaces, 5, 10367–10375.

    Article  CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. Soil Biology and Biochemistry, 43, 1812–1836.

    Article  CAS  Google Scholar 

  • Li, F., Shen, K., Long, X., Wen, J., Xie, X., & Zeng, X. (2016). Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PloS One, 11, e0148132. doi:10.1371/journal.pone.0148132.

    Article  Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.

    Article  CAS  Google Scholar 

  • Mckay, G., & Ho, Y. S. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  Google Scholar 

  • Melo, L. C. A., Alleoni, L. R. F., Carvalho, G., & Azevedo, R. A. (2011). Cadmium- and barium-toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with different physicochemical properties. Journal of Plant Nutrition and Soil Science, 174, 847–859.

    Article  CAS  Google Scholar 

  • Melo, L. C. A., Coscione, A. R., Abreu, C. A., Puga, A. P., & Camargo, O. A. (2013). Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw–derived biochar. BioResources, 8, 4992–5004.

    Article  Google Scholar 

  • Meng, L., Zhang, X., Tang, Y., Su, K., & Kong, J. (2015). Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes. Scientific Reports, 5, 7910.

    Article  CAS  Google Scholar 

  • Mi, H., Jiang, Z., & Kong, J. (2013). Hydrophobic poly(ionic liquid) for highly effective separation of methyl blue and chromium ions from water. Polymers, 5, 1203–1214.

    Article  CAS  Google Scholar 

  • Mohan, D., Jr., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Gomez-Serrano, V., & Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid Interface Science, 310, 57–73.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., & Fatinathan, S. (2008). Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143, 62–72.

    Article  CAS  Google Scholar 

  • Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M. A., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3, 195–206.

    CAS  Google Scholar 

  • Park, J. H., Choppala, G. H., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. (2013). Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soil. Water, Air, & Soil Pollution, 224, 1711. doi:10.1007/s11270-013-1711-1.

    Article  Google Scholar 

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2013). A study on the status of fluoride ion in groundwater of coastal hard rock aquifers of south India. Arabian Journal of Geosciences, 6, 4167–4177.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (1999). Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. In D. L. Sparks (Ed.), Soil Physical Chemistry (pp. 135–191). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sun, K., Kang, M., Zhang, Z., Jin, J., & Wang, Z. (2013). Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environmental Science & Technology, 47, 11473–11481.

    Article  CAS  Google Scholar 

  • Tan, C., Yaxin, Z., Hongtao, W., Wenjing, L., Zeyu, Z., Yuancheng, Z., & Lulu, R. (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology, 164, 47–54.

    Article  Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 170–185.

    Article  Google Scholar 

  • Usman, A. R. A., Sallam, A. S., Al-Omran, A., El-Naggar, A. H., Alenazi, K. K. H., Nadeem, M., & Al-Wabel, M. I. (2013). Chemically modified biochar produced from conocarpus wastes: an efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science Technology, 31, 625–640.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., Abduljabbar, A., Vithanaged, M., Ok, Y. S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S. S., & Al-Wabel, M. I. (2015). Biochar production from date palm waste: charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis, 115, 392–400.

    Article  CAS  Google Scholar 

  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235–246.

    Article  Google Scholar 

  • Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere, 92, 955–961.

    Article  CAS  Google Scholar 

  • Yang, Y., Lin, X., Wei, B., Zhao, Y., & Wang, J. (2013). Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. International Journal of Environmental Science and Technology, 11, 1093–1100.

    Article  Google Scholar 

  • Yuan, J.-H., Xu, R.-K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488–3497.

    Article  CAS  Google Scholar 

  • Zhang, J., Liu, J., & Liu, R. (2015). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lingo-sulfonate. Bioresource Technology, 176, 288–291.

    Article  CAS  Google Scholar 

  • Zhao, W., Tang, W., Xi, J., & Kong, J. (2015). Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes. Applied Surface Science, 326, 276–284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research, King Saud University for funding this work through the international research group project IRG-14-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Al-Wabel.

Additional information

Highlights

• Date palm waste is possible to convert into biochar as sorbents for removal of Cd.

• Pyrolysis temperatures control adsorption efficiency of Cd onto biochar surface.

• Chemisorption is main mechanism controlling Cd adsorption onto biochars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, A., Sallam, A., Zhang, M. et al. Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency and Mechanisms. Water Air Soil Pollut 227, 449 (2016). https://doi.org/10.1007/s11270-016-3161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3161-z

Keywords

Navigation