Skip to main content
Log in

Preparation and characterization of carboxylated cellulose nanocrystals from Oxytenanthera abyssinica (Ethiopian lowland bamboo) cellulose via citric acid anhydrous hydrolysis catalyzed by sulfuric acid

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Acid hydrolysis, which uses concentrated mineral acids to produce cellulose nanocrystals (CNC), is expensive, overdegrades the cellulose material, and is hazardous to human and the environment. Thus recently, research has concentrated on using organic acids to produce CNC for economic and environmental concerns. This study used citric acid anhydrous (85–100 wt%) with a smaller amount of sulfuric acid (0–15wt%) as a catalyst to prepare carboxylated nanocrystals from Oxytenanthera abyssinica cellulose. The highest yield (89.7%) was obtained with a reaction condition of a 9:1wt% ratio of citric acid anhydrous to sulfuric acid, temperature (80 °C), and reaction time (5 h). The carboxyl functionalization of cellulose nanocrystals was affirmed through the conductometric titrimetric method and Fourier transform infrared spectroscopy. The conductometric titration showed a maximum carboxylate concentration of 0.75 ± 0.08 mmol/g; this gave the CNC stable dispersibility. Based on scanning electron microscopy characterization, mostly spherical-like shapes of carboxylated cellulose nanocrystals were obtained. The dynamic light scattering analysis showed that the particle possesses a particle size of 68.06 ± 1.05 nm with a maximum absolute value zeta potential of -33 mV. The x-ray diffraction analysis found cellulose crystallinity in the 60.37 to 81.3% range. The thermal gravimetric analysis showed that rapid mass loss occurred between 245 and 400 °C, with a maximum weight loss of 95%. Introducing the carboxylic group from citric acid anhydrous to cellulose can enhance the application of cellulose. Since the carboxylic groups are simultaneously introduced to the surface of cellulose during the hydrolysis process, it has the advantage of reducing the amount and chemical prices that cost for series and long-step surface functionalizing reactions. Citric acid could be easily recovered through a rotary evaporator, and since it is obtained from fruits, the carboxylic CNC formed has lower toxic risks. These environmentally friendly, sustainable, and nontoxic properties gave the produced carboxylic CNC high potential application for the production of biofilms, food packaging material, UV protection, drug delivery, and new bio-based nanomaterials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this paper.

References

  1. Kwok TT, Fogg DN, Realff MJ, Bommarius AS (2017) Applying direct yellow 11 to a modified Simons’ staining assay. Cellulose 24:2367–2373

    Article  Google Scholar 

  2. Wang H, Du H, Liu K, Liu H, Xu T, Zhang S, Chen X, Zhang R, Li H, Xie H (2021) Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr Polym 266:118107

    Article  Google Scholar 

  3. Chen L, Zhu J, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843

    Article  Google Scholar 

  4. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1):13

    Google Scholar 

  5. Mokhena TC, John MJ (2020) Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27(3):1149–1194

    Article  Google Scholar 

  6. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33(7):1583–1598

    Article  Google Scholar 

  7. Wang Q, Zhao X, Zhu J (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53:11007–11014

    Article  Google Scholar 

  8. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem 1:3938–3944

    Article  Google Scholar 

  9. Camarero ES, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230

    Article  Google Scholar 

  10. Sharma PR, Joshi R, Sharma SK, Hsiao BS (2017) A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromol 18:2333–2342

    Article  Google Scholar 

  11. Cheng M, Qin Z, Chen Y, Liu J, Ren Z (2017) Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose 24:3243–3254

    Article  Google Scholar 

  12. Wang DC, Yu HY, Qi D, Wu Y, Chen L, Li Z (2021) Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J Am Chem Soc 143:11620–11630

    Article  Google Scholar 

  13. Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:7923068. https://doi.org/10.1155/2018/7923068

    Article  Google Scholar 

  14. Ji JH, Xiang Z, Qi H, Han T, Pranovich A, Song T (2019) Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chem 21(8):1956–1964

    Article  Google Scholar 

  15. Jiang J, Zhu Y, Jiang F (2021) Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives. Carbohydr Polym 267:118188

    Article  Google Scholar 

  16. Liu W, Du H, Liu H, Xie H, Xu T, Zhao X, Liu Y, Zhang X, Si C (2020) Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain Chem Eng 8(44):16691–16700

    Article  Google Scholar 

  17. Håkansson KM, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5(1):1–10

    Article  Google Scholar 

  18. Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118(24):11575–11625

    Article  Google Scholar 

  19. Chen W, Yu H, Lee S-Y, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47(8):2837–2872

    Article  Google Scholar 

  20. Kim JH, Lee D, Lee YH, Chen W, Lee SY (2019) Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv Mater 31(20):1804826

    Article  Google Scholar 

  21. Miao C, Du H, Parit M, Jiang Z, Tippur HV, Zhang X, Liu Z, Li J, Wang R (2020) Superior crack initiation and growth characteristics of cellulose nanopapers. Cellulose 27(6):3181–3195

    Article  Google Scholar 

  22. Zhou Y, Fu S, Zheng L, Zhan H (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films. Express Polym Lett 6(10):794–804

    Article  Google Scholar 

  23. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144

    Article  Google Scholar 

  24. Lin W, Chen D, Yong Q, Huang C, Huang S (2019) Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. Bioresour Technol 293:122055

    Article  Google Scholar 

  25. Abouzeid RE, Khiari R, El-Wakil N, Dufresne A (2018) Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromol 20(2):573–597

    Article  Google Scholar 

  26. Dong YD, Zhang H, Zhong GJ, Yao G, Lai B (2021) Cellulose/carbon composites and their applications in water treatment–a review. J Chem Eng 405:126980

    Article  Google Scholar 

  27. Hubbe MA, Tayeb P, Joyce M, Tyagi P, Kehoe M, Dimic-Misic K, Pal L (2017) Rheology of nanocellulose-rich aqueous suspensions: a review. BioResources 12(4):9556–9661

    Article  Google Scholar 

  28. Liu C, Du H, Dong L, Wang X, Zhang Y, Yu G, Li B, Mu X, Peng H, Liu H (2017) Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind Eng Chem Res 56(29):8264–8273

    Article  Google Scholar 

  29. Clarkson CM, El Awad Azrak SM, Forti ES, Schueneman GT, Moon RJ, Youngblood JP (2021) Recent developments in cellulose nanomaterial composites. Adv Mater 33(28):2000718

    Article  Google Scholar 

  30. Zheng T, Pilla S (2020) Melt processing of cellulose nanocrystal-filled composites: toward reinforcement and foam nucleation. Ind Eng Chem Res 59(18):8511–8531

    Article  Google Scholar 

  31. Choque-Quispe D, Choque-Quispe Y, Ligarda-Samanez CA, Peralta-Guevara DE, Solano-Reynoso AM, Ramos-Pacheco BS, Taipe-Pardo F, Martínez-Huamán EL, Aguirre Landa JP, Agreda Cerna HW (2022) Effect of the addition of corn husk cellulose nanocrystals in the development of a novel edible film. Nanomaterials 12:3421

    Article  Google Scholar 

  32. Jeevahan J, Chandrasekaran M (2019) Influence of nanocellulose additive on the film properties of native rice starch-based edible films for food packaging, Recent Pat. Nanotechnol 13:222–233

    Google Scholar 

  33. Torlopov MA, Martakov IS, Mikhaylov VI, Krivoshapkin PV, Tsvetkov NV, Sitnikov PA, Udoratina EV (2018) Disk-like nanocrystals prepared by solvolysis from regenerated cellulose and colloid properties of their hydrosols. Carbohydr Polym 200:162–172

    Article  Google Scholar 

  34. Worku LA, Bachheti RK, Tadesse MG (2022) Isolation and characterization of natural cellulose from Oxytenanthera abyssinica (Lowland Ethiopian Bamboo) using alkali peroxide bleaching stages followed by aqueous chlorite in buffer solution. Int J Polym Sci 2022:5155552. https://doi.org/10.1155/2022/5155552

  35. Miruts F (2020) On-farm demonstration of improved rice (Oryza sativa L) varieties in Pawe woreda of Metekel Zone, Ethiopia. J Biology, Agriculture and Healthcare 10:1–5

    Google Scholar 

  36. Ambawu T (2019) Value chain analysis of groundnut in Pawiworeda, Metekel Zone, Ethiopia. https://www.grin.com/document/505489. Accessed 28 Nov 2022

  37. TAPPI (2002) Standards and suggested methods. TAPPI Press, Atlanta, Georgia, USA

    Google Scholar 

  38. IUCN (1989) Policy statement on research involving species at risk of extinction. In: Approved by the 27th Meeting of IUCN Council, Gland, Switzerland. https://portals.iucn.org/library/efiles/documents/PP-003-En.pdf

  39. Xu W, Grénman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C (2017) Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals. ChemNanoMat 3(2):109–119

    Article  Google Scholar 

  40. Beltramino F, Roncero MB, Vidal T, Torres AL, Valls C (2015) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Bioresour Technol 192:574–581

    Article  Google Scholar 

  41. Gong J, Li J, Xu J, Xiang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7(53):33486–33493

    Article  Google Scholar 

  42. Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang BJ (2016) Engineering. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4(4):2165–2172

    Article  Google Scholar 

  43. Yu M, Yang R, Huang L, Cao X, Yang F, Liu D (2012) Preparation and characterization of bamboo nanocrystalline cellulose. BioResources 7(2):1802–1812

    Article  Google Scholar 

  44. Wijaya CJ, Saputra SN, Soetaredjo FE, Putro JN, Lin CX, Kurniawan A, Ju YH, Ismadji S (2017) Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr Polym 175:370–376

    Article  Google Scholar 

  45. Yu H-Y, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4(5):2632–2643

    Article  Google Scholar 

  46. Luzi F, Puglia D, Sarasini F, Tirillò J, Maffei G, Zuorro A, Lavecchia R, Kenny J, Torre L (2019) Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydr Polym 209:328–337

    Article  Google Scholar 

  47. Yu H, Abdalkarim SYH, Zhang H, Wang C, Tam KC (2019) Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids. ACS Sustain Chem Eng 7(5):4912–4923

    Article  Google Scholar 

  48. Saini A, Yadav C, Xue BL, Wang N, Dai L, Li X (2019) Mixed-acid-assisted hydrothermal process for simultaneous preparation and carboxylation of needle-shaped cellulose nanocrystals. ACS Appl Polym Mater 2(2):548–562

    Article  Google Scholar 

  49. Xie H, Zou Z, Du H, Zhang X, Wang X, Yang X, Wang H, Li G, Li L, Si C (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydr Polym 223:115116

    Article  Google Scholar 

  50. Li LB, Xu W, Kronlund D, Määttänen A, Liu J, Smått JH, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612

    Article  Google Scholar 

  51. Shanmugarajah B, Kiew PL, Chew IML, Choong TSY, Tan KW (2015) Isolation of nanocrystalline cellulose (NCC) from palm oil empty fruit bunch (EFB): preliminary result on FTIR and DLS analysis. Chem Eng Trans 45:1705–1710

    Google Scholar 

  52. Rehman N, de Miranda MIG, Rosa SM, Pimentel DM, Nachtigall S, Bica CI (2014) Cellulose and nanocellulose from maize straw: an insight on the crystal properties. J Polym Environ 22(2):252–259

    Google Scholar 

  53. Mondragon G, Fernandes S, Retegi A, Peña C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148

    Article  Google Scholar 

  54. Rasheed M, Jawaid M, Parveez B, Zuriyati A, Khan A (2020) Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. Int J Biol Macromol 160:183–191

    Article  Google Scholar 

  55. Bashar M, Zhu H, Yamamoto S, Mitsuishi M (2019) Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26(6):3671–3684

    Article  Google Scholar 

  56. Rayung M, Ibrahim NA, Zainuddin N, Saad WZ, Razak NIA, Chieng BW (2014) The effect of fiber bleaching treatment on the properties of poly (lactic acid)/oil palm empty fruit bunch fiber composites. Int J Mol Sci 15(8):14728–14742

    Article  Google Scholar 

  57. Abdul Razak NI, Ibrahim NA, Zainuddin N, Saad RM, WZ, (2014) The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly (lactic acid) composites. Molecules 19:2957–2968

    Article  Google Scholar 

  58. Kondo T, Sawatari CA (1996) Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37(3):393–399

    Article  Google Scholar 

  59. Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem 2(2014):251–258

    Article  Google Scholar 

  60. Jia W, Liu Y (2019) Two characteristic cellulose nanocrystals (CNCs) obtained from oxalic acid and sulfuric acid processing. Cellulose 26:8351–8365

    Article  Google Scholar 

  61. Li D, Henschen J, Ek M (2017) Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem 19:5564–5567

    Article  Google Scholar 

  62. Bondancia TJ, de Aguiar J, Batista G, Cruz AJ, Marconcini JM, Mattoso LHC, Farinas CS (2020) Production of nanocellulose using citric acid in a biorefinery concept: effect of the hydrolysis reaction time and techno-economic analysis. Ind Eng Chem Res 59:11505–11516

    Article  Google Scholar 

  63. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  Google Scholar 

  64. Hu Y, Tang L, Lu Q, Wang S, Chen X, Huang B (2014) Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 221(3):1611–1618

    Article  Google Scholar 

  65. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydr Polym 80(3):852–859

    Article  Google Scholar 

  66. Seta FT, An X, Liu L, Zhang H, Yang J, Zhang W, Nie S, Yao S, Cao H, Xu Q (2020) Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr Polym 234:115942

    Article  Google Scholar 

  67. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure– morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  Google Scholar 

  68. Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y, Liu W, Lan H, Zhang X, Si C (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7(7):7200–7208

    Article  Google Scholar 

  69. Mohammed N, Lian H, Islam MS (2021) Strong M Shi Z, Berry RM, Yu HY, Tam KC (2021) Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. J Chem Eng 417:129237

    Article  Google Scholar 

  70. Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461

    Article  Google Scholar 

  71. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast 24(12):1259–1268

    Article  Google Scholar 

  72. Dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714

    Article  Google Scholar 

  73. Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591

    Article  Google Scholar 

  74. Cheng M, Qin Z, Hu J, Liu Q, Wei T, Li W, Ling Y, Liu B (2020) Facile and rapid one– step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohydr Polym 231:115701

    Article  Google Scholar 

  75. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5(5):1671–1677

    Article  Google Scholar 

  76. Liu C, Du H, Yu G, Zhang Y, Kong Q, Li B, Mu X (2017) Simultaneous extraction of carboxylated cellulose nanocrystals and nanofibrils via citric acid hydrolysis-a sustainable route. Paper and Biomaterials 2(4):19–26

    Google Scholar 

  77. Nascimento P, Marim R, Carvalho G, Mali S (2016) Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Mater Res 19:167–174

    Article  Google Scholar 

  78. Tonoli G, Teixeira E, Corrêa A, Marconcini J, Caixeta L, Pereira-da-Silva M, Mattoso L (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88

    Article  Google Scholar 

  79. Wang R, Chen L, Zhu J, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3(5):328–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Limenew Abate Worku. The first draft of the manuscript was written by Rakesh Kumar Bachheti, Mesfin Getachew Tadesse, and Limenew Abate Worku. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. All authors also worked on revision of the article.

Corresponding author

Correspondence to Rakesh Kumar Bachheti.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worku, L.A., Bachheti, R.K. & Tadesse, M.G. Preparation and characterization of carboxylated cellulose nanocrystals from Oxytenanthera abyssinica (Ethiopian lowland bamboo) cellulose via citric acid anhydrous hydrolysis catalyzed by sulfuric acid. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-022-03718-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03718-0

Keywords

Navigation