Skip to main content

Advertisement

Log in

Detoxification of hemicellulose-enriched hydrolysate from sugarcane bagasse by activated carbon and macroporous adsorption resin

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Hemicellulose-derived sugars, especially xylose and xylooligosaccharide (XOS), obtained from lignocellulosic biomass can promote further applications in alternative chemical, food, and health care industries. In this study, a hemicellulose-rich hydrolysate was extracted by the hydrothermal pretreatment of sugarcane bagasse at 175 °C. The two-step combination process of activated carbon and macroporous adsorption resin demonstrated a high efficiency of removal in terms of total byproducts (hydroxymethylfurfural, furfural, lactic acid, formic acid, acetic acid, levulinic acid, and succinic acid) and phenolic content with 70.9% and 92.0%, respectively. This synergistic process achieved a higher purity of total sugar (89.7%) than the single detoxification processes with activated carbon and macroporous resin (83.6% and 84.3%, respectively). Moreover, detoxification by activated carbon achieved the removal of the total byproducts in the range of 47.1 to 63.9%, particularly the removal of hydroxymethylfurfural and furfural under the condition from 5 to 10% (w/v) activated carbon loading and temperature at 4–70 °C for 4 h. Using macroporous adsorption resin affected the removal of the total phenolic content in the range of 68.3 to 98.4% with high loss of XOS sugar under conditions from 2 to 20% (w/v) resin loading at 25 °C for 1 h. This work provides a simple process for the detoxification of hemicellulose-rich hydrolysates by adsorbent materials from hydrothermal sugarcane bagasse processing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bhatia L, Sharma A, Bachheti RK, Chandel AK (2019) Lignocellulose derived functional oligosaccharides: production, properties, and health benefits. Prep Biochem Biotechnol 49(8):744–758. https://doi.org/10.1080/10826068.2019.1608446

    Article  Google Scholar 

  2. Raita M, Ibenegbu C, Champreda V, Leak DJ (2016) Production of ethanol by thermophilic oligosaccharide utilising Geobacillus thermoglucosidasius TM242 using palm kernel cake as a renewable feedstock. Biomass Bioenerg 95:45–54. https://doi.org/10.1016/j.biombioe.2016.08.015

    Article  Google Scholar 

  3. Huang L, Ma M, Ji X, Choi S, Si C (2021) Recent developments and applications of hemicellulose from wheat straw: a review. Front Bioeng Biotechnol 9:440. https://doi.org/10.3389/fbioe.2021.690773

    Article  Google Scholar 

  4. Hu L, Fang X, Du M, Luo F, Guo S (2020) Hemicellulose-based polymers processing and application. Am J Plant Sci 11(12):2066–2079. https://doi.org/10.4236/ajps.2020.1112146

    Article  Google Scholar 

  5. Ajala E, Ighalo J, Ajala M, Adeniyi A, Ayanshola A (2021) Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources Bioprocess 8(1):1–25. https://doi.org/10.1186/s40643-021-00440-z

    Article  Google Scholar 

  6. Chen W, Nižetić S, Sirohi R, Huang Z, Luque R, M.Papadopoulos A, Sakthivel R, Phuong Nguyen X, Tuan Hoang A (2022) Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technol 344:126207. https://doi.org/10.1016/j.biortech.2021.126207

    Article  Google Scholar 

  7. Yang Z, Cao L, Li Y, Zhang M, Zeng F, Yao S (2020) Effect of pH on hemicellulose extraction and physicochemical characteristics of solids during hydrothermal pretreatment of eucalyptus. BioResources 15(3):6627–6635

    Article  Google Scholar 

  8. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41. https://doi.org/10.1016/j.carbpol.2017.09.064

    Article  Google Scholar 

  9. Shah AA, Seehar TH, Sharma K, Toor SS (2022) Chapter 7 - Biomass pretreatment technologies. In: Maity SK, Gayen K, Bhowmick TK (eds) Hydrocarbon Biorefinery. Elsevier, Amsterdam, pp 203–228

    Chapter  Google Scholar 

  10. Xiao LP, Song GY, Sun RC (2017) Effect of hydrothermal processing on hemicellulose structure. In: Ruiz H A, Hedegaard Thomsen M,Trajano H (ed) Hydrothermal Processing in Biorefineries. Springer Cham, pp 45–94

  11. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Biores Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  12. Qin L, Li W-C, Liu L, Zhu J-Q, Li X, Li B-Z, Yuan Y-J (2016) Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnol Biofuels 9(1):1–10. https://doi.org/10.1186/s13068-016-0485-2

    Article  Google Scholar 

  13. Matano C, Meiswinkel TM, Wendisch VF (2014) Chapter 38 - amino acid production from rice straw hydrolyzates. In: Watson RR, Preedy VR, Zibadi S (eds) Wheat and Rice in Disease Prevention and Health. Academic Press, San Diego, pp 493–505

    Chapter  Google Scholar 

  14. Sartori JA, FigueiredoAngolini CF, Eberlin MN, Aguiar CL (2019) Reactions involved in phenolics degradation from sugarcane juice treated by ozone. Ozone Sci Eng 41(4):369–375. https://doi.org/10.1080/01919512.2018.1547183

    Article  Google Scholar 

  15. Ferreira-Santos P, Zanuso E, Genisheva Z, Rocha CM, Teixeira JA (2020) Green and sustainable valorization of bioactive phenolic compounds from pinus by-products. Molecules 25(12):2931. https://doi.org/10.3390/molecules25122931

    Article  Google Scholar 

  16. Luo X, Zeng B, Zhong Y, Chen J (2021) Production and detoxification of inhibitors during the destruction of lignocellulose spatial structure. BioResources 17(1):23

    Article  Google Scholar 

  17. Wang X, Zhuang J, Fu Y, Tian G, Wang Z, Qin M (2016) Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin. Bioresour Technol 206:225–230. https://doi.org/10.1016/j.biortech.2016.01.107

    Article  Google Scholar 

  18. Do Nascimento BF, De Araujo CMB, Do Nascimento AC, Da Silva FLH, De Melo DJN, Jaguaribe EF, Cavalcanti JVFL, Da Motta SMA (2021) Detoxification of sisal bagasse hydrolysate using activated carbon produced from the gasification of açaí waste. J Hazard Mater 409:124494. https://doi.org/10.1016/j.jhazmat.2020.124494

    Article  Google Scholar 

  19. Lu C, Dong J, Yang S-T (2013) Butanol production from wood pulping hydrolysate in an integrated fermentation–gas stripping process. Biores Technol 143:467–475. https://doi.org/10.1016/j.biortech.2013.06.012

    Article  Google Scholar 

  20. Lee J, Park KY (2020) Impact of hydrothermal pretreatment on anaerobic digestion efficiency for lignocellulosic biomass: influence of pretreatment temperature on the formation of biomass-degrading byproducts. Chemosphere 256:127116. https://doi.org/10.1016/j.chemosphere.2020.127116

    Article  Google Scholar 

  21. Zhang Y, Xia C, Lu M, Tu M (2018) Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates. Biotechnol Biofuels 11(1):1–14. https://doi.org/10.1186/s13068-018-1182-0

    Article  Google Scholar 

  22. Aljohani H, Ahmed Y, El-Shafey O, El-Shafey S, Fouad R, Shoueir K (2018) Decolorization of turbid sugar juice from sugar factory using waste powdered carbon. Appl Water Sci 8(1):48. https://doi.org/10.1007/s13201-018-0681-2

    Article  Google Scholar 

  23. Insuwan W, Saosai N (2019) An investigation of phenol adsorption from aqueous solution using solid adsorbents. Naresuan Univ J Sci Technol (NUJST) 27(4):1–9. https://doi.org/10.14456/nujst.2019.31

    Article  Google Scholar 

  24. Wang X, Su J, Chu X, Zhang X, Kan Q, Liu R, Fu X (2021) Adsorption and desorption characteristics of total flavonoids from acanthopanax senticosus on macroporous adsorption resins. Molecules 26(14):4162. https://doi.org/10.3390/molecules26144162

    Article  Google Scholar 

  25. Qu L, Xin H, Su Y, Zheng G, Ling C (2012) Combined application of macroporous resin and high speed counter-current chromatography for preparative separation of three flavonoid triglycosides from the leaves of Actinidia valvata D unn. J Sep Sci 35(7):883–892. https://doi.org/10.1002/jssc.201101051

    Article  Google Scholar 

  26. Jin X, Liu M, Chen Z, Mao R, Xiao Q, Gao H, Wei M (2015) Separation and purification of epigallocatechin-3-gallate (EGCG) from green tea using combined macroporous resin and polyamide column chromatography. J Chromatogr B 1002:113–122. https://doi.org/10.1016/j.jchromb.2015.07.055

    Article  Google Scholar 

  27. Li Y, Fang S, Zhou X, Zhao Z, Li F, Liu P (2020) Adsorption study of lignin removal from recycled alkali black liquor by adsorption resins for improved cellulase hydrolysis of corn straw. Molecules 25(19):4475. https://doi.org/10.3390/molecules25194475

    Article  Google Scholar 

  28. Zhou H-Y, Zhang Y-L, Lin S-J, Xue Y-P, Zheng Y-G (2019) Optimization of extraction process for efficient imino acids recovery and purification from low-value sea cucumber. Food Sci Technol 39:543–550. https://doi.org/10.1590/fst.23718

    Article  Google Scholar 

  29. Le TT, Framboisier X, Aymes A, Ropars A, Frippiat J-P, Kapel R (2021) Identification and capture of phenolic compounds from a rapeseed meal protein isolate production process by-product by macroporous resin and valorization their antioxidant properties. Molecules 26(19):5853. https://doi.org/10.3390/molecules26195853

    Article  Google Scholar 

  30. Abdul Manaf SF, Indera Luthfi AA, Md Jahim J, Harun S, Tan JP, Mohd Shah SS (2022) Sequential detoxification of oil palm fronds hydrolysate with coconut shell activated charcoal and pH controlled in bioreactor for xylitol production. Chem Eng Res Des 179:90–106. https://doi.org/10.1016/j.cherd.2022.01.008

    Article  Google Scholar 

  31. López-Linares JC, Ruiz E, Romero I, Castro E, Manzanares P (2020) Xylitol production from exhausted olive pomace by Candida boidinii. Appl Sci 10(19):6966. https://doi.org/10.3390/app10196966

    Article  Google Scholar 

  32. Sluiter A, Hames B, Ruiz RO, Scarlata C, Sluiter J, Templeton D (2004) Determination of structural carbohydrates and lignin in biomass. Biomass Anal Technol Team Lab Anal Proced 2011:1–14

    Google Scholar 

  33. Rantanen H, Virkki L, Tuomainen P, Kabel M, Schols H, Tenkanen M (2007) Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1, 4-β-D-xylanase. Carbohyd Polym 68(2):350–359. https://doi.org/10.1016/j.carbpol.2006.11.022

    Article  Google Scholar 

  34. Alzagameem A, Khaldi-Hansen BE, Büchner D, Larkins M, Kamm B, Witzleben S, Schulze M (2018) Lignocellulosic biomass as source for lignin-based environmentally benign antioxidants. Molecules 23(10):2664. https://doi.org/10.3390/molecules23102664

    Article  Google Scholar 

  35. Abedi E, Hashemi SMB (2020) Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 6(10):e04974. https://doi.org/10.1016/j.heliyon.2020.e04974

    Article  Google Scholar 

  36. Parra-Ramírez D, Martinez A, Cardona CA (2019) Lactic acid production from glucose and xylose using the lactogenic Escherichia coli strain JU15: Experiments and techno-economic results. Biores Technol 273:86–92. https://doi.org/10.1016/j.biortech.2018.10.061

    Article  Google Scholar 

  37. Sánchez C, Egüés I, García A, Llano-Ponte R, Labidi J (2012) Lactic acid production by alkaline hydrothermal treatment of corn cobs. Chem Eng J 181:655–660. https://doi.org/10.1016/j.cej.2011.12.033

    Article  Google Scholar 

  38. Sun S, Wen J, Sun S, Sun R-C (2015) Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems. Biotechnol Biofuels 8(1):1–13. https://doi.org/10.1186/s13068-015-0223-1

    Article  MathSciNet  Google Scholar 

  39. Wang Z-W, Zhu M-Q, Li M-F, Wang J-Q, Wei Q, Sun R-C (2016) Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw. Biotechnol Biofuels 9(1):1–16. https://doi.org/10.1186/s13068-016-0552-8

    Article  Google Scholar 

  40. Ilanidis D, Stagge S, Jönsson LJ, Martín C (2021) Effects of operational conditions on auto-catalyzed and sulfuric-acid-catalyzed hydrothermal pretreatment of sugarcane bagasse at different severity factor. Ind Crops Prod 159:113077. https://doi.org/10.1016/j.indcrop.2020.113077

    Article  Google Scholar 

  41. Zhang H, Wu S (2014) Impact of liquid hot water pretreatment on the structural changes of sugarcane bagasse biomass for sugar production. Appl Mech Mater 472:774–779. https://doi.org/10.4028/www.scientific.net/AMM.472.774

    Article  Google Scholar 

  42. De Sá LRV, De Oliveira FM, Da Silva ASA, Cammarota MC, Ferreira-Leitão VS (2020) Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renew Energy 146:2408–2415. https://doi.org/10.1016/j.renene.2019.08.089

    Article  Google Scholar 

  43. Fatehi P, Ryan J, Ni Y (2013) Adsorption of lignocelluloses of model pre-hydrolysis liquor on activated carbon. Biores Technol 131:308–314. https://doi.org/10.1016/j.biortech.2012.12.156

    Article  Google Scholar 

  44. Mudoga H, Yucel H, Kincal N (2008) Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Biores Technol 99(9):3528–3533. https://doi.org/10.1016/j.biortech.2007.07.058

    Article  Google Scholar 

  45. Aït-Aissa A, Gerliani N, Orlova T, Sadeghi-Tabatabai B, Aïder M (2020) Development of a process for color improvement of low-grade dark maple syrup by adsorption on activated carbon. ACS Omega 5(33):21084–21093. https://doi.org/10.1021/acsomega.0c02717

    Article  Google Scholar 

  46. Karnilaw MS (2020) Lignocellulosic hydrolysate detoxification for the production of second generation ethanol. Report, Worcester Polytechnic Institute

    Google Scholar 

  47. Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong G-T, Kim S-K (2015) Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J Microbiol Biotechnol 25(6):856–862. https://doi.org/10.4014/jmb.1409.09038

    Article  Google Scholar 

  48. Kamal S, Mohamad N, Abdullah AL, Abdullah N (2011) Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Sci 1:908–913. https://doi.org/10.1016/j.profoo.2011.09.137

    Article  Google Scholar 

  49. Valdez-Guzmán BE, Rios-Del Toro EE, Cardenas-López RL, Méndez-Acosta HO, González-Álvarez V, Arreola-Vargas J (2019) Enhancing biohydrogen production from Agave tequilana bagasse: Detoxified vs. Undetoxified acid hydrolysates. Bioresource Technol 276:74–80. https://doi.org/10.1016/j.biortech.2018.12.101

    Article  Google Scholar 

  50. Deng F, Cheong D-Y, Aita GM (2018) Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. Ind Crops Prod 115:166–173. https://doi.org/10.1016/j.indcrop.2018.02.030

    Article  Google Scholar 

  51. Gupta SA, Vishesh Y, Sarvshrestha N, Bhardwaj AS, Kumar PA, Topare NS, Raut-Jadhav S, Bokil SA, Khan A (2022) Adsorption isotherm studies of Methylene blue using activated carbon of waste fruit peel as an adsorbent. Mater Today Proc 57:1500–1508. https://doi.org/10.1016/j.matpr.2021.12.0442214-7853/

    Article  Google Scholar 

  52. Leong K-Y, See S, Lim J-W, Bashir MJ, Ng C-A, Tham L (2017) Effect of process variables interaction on simultaneous adsorption of phenol and 4-chlorophenol: statistical modeling and optimization using RSM. Appl Water Sci 7(4):2009–2020. https://doi.org/10.1007/s13201-016-0381-8

    Article  Google Scholar 

  53. Lim A, Chew JJ, Ngu LH, Ismadji S, Khaerudini DS, Sunarso J (2020) Synthesis, characterization, adsorption isotherm, and kinetic study of oil palm trunk-derived activated carbon for tannin removal from aqueous solution. ACS Omega 5(44):28673–28683. https://doi.org/10.1021/acsomega.0c03811

    Article  Google Scholar 

  54. Suzaimi ND, Goh PS, Malek NANN, Lim JW, Ismail AF (2020) Enhancing the performance of porous rice husk silica through branched polyethyleneimine grafting for phosphate adsorption. Arab J Chem 13(8):6682–6695. https://doi.org/10.1016/j.arabjc.2020.06.023

    Article  Google Scholar 

  55. Sarawan C, Suinyuy T, Sewsynker-Sukai Y, Kana EG (2019) Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Biores Technol 286:121403. https://doi.org/10.1016/j.biortech.2019.121403

    Article  Google Scholar 

  56. Mushtaq Z, Asghar N, Waheed M (2019) Comparative evaluation of detoxification strategies for sugarcane bagasse hydrolysate. JAPS J Anim Plant Sci 29(6):1775–1783

    Google Scholar 

  57. Ijzer AC, Vriezekolk E, Rolevink E, Nijmeijer K (2015) Performance analysis of aromatic adsorptive resins for the effective removal of furan derivatives from glucose. J Chem Technol Biotechnol 90(1):101–109. https://doi.org/10.1002/jctb.4294

    Article  Google Scholar 

  58. Wang F, Tong Y, Li C, Xie H, Song A (2016) Hydrolysate detoxified from steam exploded corn cob and its fermentation producing butanol fuels. Trans Chin Soc Agric Eng 32(5):257–262

    Google Scholar 

  59. Yu Q, Xu C, Zhuang X, Yuan Z, He M, Zhou G (2015) Xylo-oligosaccharides and ethanol production from liquid hot water hydrolysate of sugarcane bagasse. BioResources 10(1):30–40

    Article  Google Scholar 

  60. Liu Q, Gao Y (2015) Binary adsorption isotherm and kinetics on debittering process of ponkan (Citrus reticulata Blanco) juice with macroporous resins. LWT-Food Sci Technol 63(2):1245–1253. https://doi.org/10.1016/j.lwt.2015.04.018

    Article  Google Scholar 

  61. Wang L, Hu J, Lv W, Lu W, Pei D, Lv Y, Wang W, Zhang M, Ding R, Lv M (2021) Optimized extraction of astaxanthin from shrimp shells treated by biological enzyme and its separation and purification using macroporous resin. Food Chem 363:130369. https://doi.org/10.1016/j.foodchem.2021.130369

    Article  Google Scholar 

  62. Hou M, Hu W, Xiu Z, Shi Y, Hao K, Cao D, Guan Y, Yin H (2020) Efficient enrichment of total flavonoids from Pteris ensiformis Burm. extracts by macroporous adsorption resins and in vitro evaluation of antioxidant and antiproliferative activities. J Chromatogr B 1138:121960. https://doi.org/10.1016/j.jchromb.2019.121960

    Article  Google Scholar 

  63. Panjaitan JRH, Persada GB, Supriyadi D (2019) Kinetic parameters evaluation of furfural degradation reaction using numerical and integral methods. J Teknik Kimia dan Lingkungan 3(2):71–76. https://doi.org/10.33795/jtkl.v3i2.103

    Article  Google Scholar 

  64. Papaioannou M, Kleijwegt RJ, Van Der Schaaf J, Neira D’angelo MF (2019) Furfural production by continuous reactive extraction in a millireactor under the Taylor Flow Regime. Ind Eng Chem Res 58(35):16106–16115. https://doi.org/10.1021/acs.iecr.9b00604

    Article  Google Scholar 

  65. Tavares AP, Gonçalves MJ, Brás T, Pesce GR, Xavier AM, Fernandes MC (2022) Cardoon hydrolysate detoxification by activated carbon or membranes system for bioethanol Production. Energies 15(6):1993. https://doi.org/10.3390/en15061993

    Article  Google Scholar 

  66. Guo X, Cavka A, Jönsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12(1):1–14. https://doi.org/10.1186/1475-2859-12-93

    Article  Google Scholar 

  67. Carvalheiro F, Duarte L, Lopes S, Parajó J, Pereira H, Gırio F (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40(3–4):1215–1223. https://doi.org/10.1016/j.procbio.2004.04.015

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Program Management Unit Competitiveness (PMUC) (Contract number: C10F640104), and National Science, Research and Innovation Fund (Grant number FF 2565: FRB650048/0164).

Funding

This work was funded by the Program Management Unit Competitiveness (PMUC) (Contract number: C10F640104) and National Science, Research and Innovation Fund (Grant number FF 2565: FRB650048/0164).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Thanchanok Preechakun, Suchat Pongchaiphol, and Marisa Raita; Methodology: Thanchanok Preechakun; Formal analysis and investigation: Thanchanok Preechakun, Suchat Pongchaiphol, and Marisa Raita; Writing—original draft preparation: Thanchanok Preechakun; Writing—review and editing: Thanchanok Preechakun and Marisa Raita; Funding acquisition: Marisa Raita; Supervision: Verawat Champreda and Navadol Laosiripojana. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Marisa Raita.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Two-step detoxification of sugarcane bagasse hydrolysate was developed.

• Hydroxymethylfurfural and furfural were highly removed by activated carbon.

• Total phenolic content was effectively removed by macroporous adsorption resin.

• Xylooligosaccharides were highly adsorbed by macroporous adsorption resin than xylose.

• Xylooligosaccharides of X2–X6 products were examined by HPAEC-PAD analysis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preechakun, T., Pongchaiphol, S., Raita, M. et al. Detoxification of hemicellulose-enriched hydrolysate from sugarcane bagasse by activated carbon and macroporous adsorption resin. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03596-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03596-6

Keywords

Navigation