Skip to main content
Log in

Green synthesis and cytotoxicity evaluation of silver and gold nanoparticles using Pandanus canaranus leaf extract on Artemia salina and A549 lung cancer cells

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The green route of transition metal nanoparticle (NPs) synthesis by the single-step method has more attraction for multifunctional applications. The study aimed to demonstrate the use of Pandanus canaranus leaf extract, as an apposite substrate for the bio-synthesis of silver (Ag) NPs and Gold (Au) NPs. The UV–Vis spectrum of AgNPs and AuNPs showed an absorption peak at 450 and 520 nm, respectively. FT-IR revealed the respective functional groups (carboxylic acids and phenols) involved in the reduction of Ag + and Au + ions to nanoparticles. The XRD findings confirmed the crystalline nature of Ag and AuNPs with face-centered cubic structures, respectively. SEM images showed spherical and agglomerated morphology. Furthermore, EDX results confirmed the presence of Ag and Au metals. HRTEM images determined the sizes of AgNPs (6.33 to 24.43 nm) and AuNPs (37.44 nm) with spherical morphology. High hatching efficiency and less mortality of Artemia salina nauplii were observed in the treatment of AuNPs (93% and 26%) than AgNPs (91 and 55%). As the concentration of AgNPs and AuNPs increased, the findings of cell viability reduced (36 and 50%) in the lung cancer cells (A549 cells), respectively. The early and late apoptosis induced by the NPs in A549 cells were evidenced through AO/EtBr staining. To sum up, the PCLE-mediated NPs synthesis was very rapid and they significantly induced the apoptosis in A549 cells. With these promising potentials, P. canaranus can progress as a good candidate for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data and other materials involved in this study can be shared upon request to the authors.

Abbreviations

% :

Percentage

°C :

Degree Celsius

µg :

Microgram

µL :

Microliter

µm :

Micrometer

AgNO 3 :

Silver nitrate

AgNPs :

Silver nanoparticles

ANOVA :

Analysis of variance

AO :

Acridine orange

AuNPs :

Gold nanoparticles

cm :

Centimeter

CO 2 :

Carbon-dioxide

DAPI :

4′,6-Diamidino-2-phenylindole

H 2 O :

Water

DLS :

Dynamic light scattering

DMEM :

Dulbecco’s Modified Eagle Medium

DMRT :

Duncan’s multiple range test

DNA :

Deoxyribo nucleic acids

EDS :

Energy dispersive studies

ELISA :

Enzyme-linked immune-sorbent assay

EtBr :

Ethidium bromide

FBS :

Foetal bovine serum

fcc :

Face centered cubics

FTIR :

Fourier Transform Infra-Red

HAuCl 4 . 3 H 2 O :

Hydrogen tetrachloroaurate (III) trihydrate

IC :

Inhibitory concentration

JCPDS :

Joint Committee on Powder Diffraction Standards

KBr :

Potassium bromide

kV :

KiloVolt

L :

Liter

LC :

Lethal concentration

mg :

Milligram

ml :

Milliliter

mm :

Millimeter

mM :

Millimolar

MTT :

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

mV :

Millivolt

NaOCl :

Sodium hypochlorite

NCCS :

National Centre for Cell Science

NPs :

Nanoparticles

PBS :

Phosphate buffered saline

ppt :

Parts per thousands

RH :

Relative humidity

ROS :

Reactive oxygen species

SEM :

Scanning electron microscopy

SPSS :

Statistical package for the social sciences

HRTEM :

High resolution transmission electron microscopy

UK :

United Kingdom

USA :

United States of America

UV-Vis :

Ultraviolet and visible

XRD :

X-ray diffraction

ZP :

Zeta potential

References

  1. Hosny M, Eltaweil AS, Mostafa M et al (2022) Facile synthesis of gold nanoparticles for anticancer, antioxidant applications, and photocatalytic degradation of toxic organic pollutants. ACS Omega 7:3121–3133. https://doi.org/10.1021/acsomega.1c06714

    Article  Google Scholar 

  2. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040. https://doi.org/10.1016/j.ces.2005.06.019

    Article  Google Scholar 

  3. Chand K, Abro MI, Aftab U et al (2019) Green synthesis characterization and antimicrobial activity against Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato. RSC Adv 9:17002–17015. https://doi.org/10.1039/C9RA01407A

    Article  Google Scholar 

  4. Alharbi NS, Alsubhi NS (2022) Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. J Radiat Res Appl Sci 15:335–345. https://doi.org/10.1016/j.jrras.2022.08.009

    Article  Google Scholar 

  5. Tian S, Saravanan K, Mothana RA et al (2020) Anti-cancer activity of biosynthesized silver nanoparticles using Avicennia marina against A549 lung cancer cells through ROS/mitochondrial damages. Saudi J Biol Sci 27:3018–3024. https://doi.org/10.1016/j.sjbs.2020.08.029

    Article  Google Scholar 

  6. Khatik N (2022) Green synthesis of nanomaterials and their utilization as potential vehicles for targeted cancer drug delivery. Adv Pharmacol Pharm 10:114–121. https://doi.org/10.13189/app.2022.100205

    Article  Google Scholar 

  7. Patra JK, Das G, Fraceto LF et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16:71. https://doi.org/10.1186/s12951-018-0392-8

    Article  Google Scholar 

  8. Franco F, Rettenmaier C, Jeon HS, Roldan Cuenya B (2020) Transition metal-based catalysts for the electrochemical CO 2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev 49:6884–6946. https://doi.org/10.1039/D0CS00835D

    Article  Google Scholar 

  9. Laban B, Ralević U, Petrović S et al (2020) Green synthesis and characterization of nontoxic L-methionine capped silver and gold nanoparticles. J Inorg Biochem 204:110958. https://doi.org/10.1016/j.jinorgbio.2019.110958

    Article  Google Scholar 

  10. Perera M, Wijenayaka LA, Siriwardana K et al (2020) Gold nanoparticle decorated titania for sustainable environmental remediation: green synthesis, enhanced surface adsorption and synergistic photocatalysis. RSC Adv 10:29594–29602. https://doi.org/10.1039/D0RA05607C

    Article  Google Scholar 

  11. Moradi S, Khaledian S, Abdoli M et al (2018) Nano-biosensors in cellular and molecular biology. Cell Mol Biol 64:85–90. https://doi.org/10.14715/cmb/2018.64.5.14

    Article  Google Scholar 

  12. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J et al (2020) Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 10:1763. https://doi.org/10.3390/nano10091763

    Article  Google Scholar 

  13. Abdoli M, Mohammadi G, Mansouri K et al (2022) A review on anticancer, antibacterial and photo catalytic activity of various nanoparticles synthesized by probiotics. J Biotechnol 354:63–71. https://doi.org/10.1016/j.jbiotec.2022.06.005

    Article  Google Scholar 

  14. Khaledian S, Nikkhah M, Shams-bakhsh M, Hoseinzadeh S (2017) A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. J Gen Plant Pathol 83:231–239. https://doi.org/10.1007/s10327-017-0721-z

    Article  Google Scholar 

  15. Peralta-Videa JR, Huang Y, Parsons JG et al (2016) Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng 1:4. https://doi.org/10.1007/s41204-016-0004-5

    Article  Google Scholar 

  16. Slepička P, Slepičková Kasálková N, Siegel J et al (2019) Methods of gold and silver nanoparticles preparation. Materials (Basel) 13:1. https://doi.org/10.3390/ma13010001

    Article  Google Scholar 

  17. Abdoli M, Arkan E, Shekarbeygi Z, Khaledian S (2021) Green synthesis of gold nanoparticles using Centaurea behen leaf aqueous extract and investigating their antioxidant and cytotoxic effects on acute leukemia cancer cell line (THP-1). Inorg Chem Commun 129:108649. https://doi.org/10.1016/j.inoche.2021.108649

    Article  Google Scholar 

  18. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J 24:473–484. https://doi.org/10.1016/j.jsps.2014.11.013

    Article  Google Scholar 

  19. Adkar PP, Bhaskar VH (2014) Pandanus odoratissimus (Kewda): A review on ethnopharmacology, phytochemistry, and nutritional aspects. Adv Pharmacol Sci 2014:1–19. https://doi.org/10.1155/2014/120895

    Article  Google Scholar 

  20. Jose B, Harikumar K, Krishnan PN, Satheeshkumar K (2016) In vitro mass multiplication of screw pines (Pandanus spp.) - an important costal bio- resource. J Coast Conserv 20:443–453. https://doi.org/10.1007/s11852-016-0458-4

    Article  Google Scholar 

  21. Balamurugan V, Raja K, Selvakumar S, Vasanth K (2022) Phytochemical screening, antioxidant, anti-diabetic and cytotoxic activity of leaves of Pandanus canaranus Warb. Mater Today Proc 48:322–329. https://doi.org/10.1016/j.matpr.2020.07.603

    Article  Google Scholar 

  22. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275. https://doi.org/10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  23. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  24. Ramalingam V, Revathidevi S, Shanmuganayagam TS et al (2017) Gold nanoparticle induces mitochondria-mediated apoptosis and cell cycle arrest in nonsmall cell lung cancer cells. Gold Bull 50:177–189. https://doi.org/10.1007/s13404-017-0208-x

    Article  Google Scholar 

  25. Kuppusamy P, Ichwan SJA, Al-Zikri PNH et al (2016) In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol Trace Elem Res 173:297–305. https://doi.org/10.1007/s12011-016-0666-7

    Article  Google Scholar 

  26. Yallappa S, Manjanna J, Peethambar SK et al (2013) Green synthesis of silver nanoparticles using Acacia farnesiana (sweet acacia) seed extract under microwave irradiation and their biological assessment. J Clust Sci 24:1081–1092

    Article  Google Scholar 

  27. Hosny M, Fawzy M, Eltaweil AS (2022) Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. J Environ Manag 316:115238. https://doi.org/10.1016/j.jenvman.2022.115238

    Article  Google Scholar 

  28. Shukurov I, Mohamed MS, Mizuki T et al (2022) Biological synthesis of bioactive gold nanoparticles from Inonotus obliquus for dual chemo-photothermal effects against human brain cancer cells. Int J Mol Sci 23:2292

    Article  Google Scholar 

  29. Chokkalingam M, Singh P, Huo Y et al (2019) Facile synthesis of Au and Ag nanoparticles using fruit extract of Lycium chinense and their anticancer activity. J Drug Deliv Sci Technol 49:308–315. https://doi.org/10.1016/j.jddst.2018.11.025

    Article  Google Scholar 

  30. Vanaja M, Paulkumar K, Gnanajobitha G et al (2014) Herbal plant synthesis of antibacterial silver nanoparticles by Solanum trilobatum and its characterization. Int J Metal 692461:1–8. https://doi.org/10.1155/2014/692461

  31. Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6:399–408. https://doi.org/10.1007/s13204-015-0449-z

    Article  Google Scholar 

  32. Vijayan SR, Santhiyagu P, Singamuthu M et al (2014) Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J 2014:1–10. https://doi.org/10.1155/2014/938272

    Article  Google Scholar 

  33. Vanaja M, Gnanajobitha G, Paulkumar K et al (2013) Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J Nanostructure Chem 3:17. https://doi.org/10.1186/2193-8865-3-17

    Article  Google Scholar 

  34. Rasmussen MK, Pedersen JN, Marie R (2020) Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun 11:2337. https://doi.org/10.1038/s41467-020-15889-3

    Article  Google Scholar 

  35. Rekulapally R, Murthy Chavali LN, Idris MM, Singh S (2019) Toxicity of TiO 2, SiO 2, ZnO, CuO, Au and Ag engineered nanoparticles on hatching and early nauplii of Artemia sp. PeerJ 6:e6138. https://doi.org/10.7717/peerj.6138

    Article  Google Scholar 

  36. MacRae TH, Pandey AS (1991) Effects of metals on early life stages of the brine shrimp, Artemia: a developmental toxicity assay. Arch Environ Contam Toxicol 20:247–252. https://doi.org/10.1007/BF01055911

    Article  Google Scholar 

  37. Balalakshmi C, Gopinath K, Govindarajan M et al (2017) Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B Biol 173:598–605. https://doi.org/10.1016/j.jphotobiol.2017.06.040

    Article  Google Scholar 

  38. Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144:453–462. https://doi.org/10.1016/j.envpol.2005.12.037

    Article  Google Scholar 

  39. Mayorga P, Pérez KR, Cruz SM, Cáceres A (2010) Comparison of bioassays using the anostracan crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Rev Bras Farmacogn 20:897–903. https://doi.org/10.1590/S0102-695X2010005000029

    Article  Google Scholar 

  40. Radhika Rajasree SR, Ganesh Kumar V, Stanley Abraham L, Indabakandan D (2010) Studies on the toxicological effects of engineered nanoparticles in environment—a review. Int J Appl Bioeng 4:44–53

    Article  Google Scholar 

  41. Rodd AL, Creighton MA, Vaslet CA et al (2014) Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. Environ Sci Technol 48:6419–6427. https://doi.org/10.1021/es500892m

    Article  Google Scholar 

  42. Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D (2014) Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci World J 2014:1–10. https://doi.org/10.1155/2014/256919

    Article  Google Scholar 

  43. Karthika V, Arumugam A, Gopinath K et al (2017) Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J Photochem Photobiol B Biol 167:189–199. https://doi.org/10.1016/j.jphotobiol.2017.01.008

    Article  Google Scholar 

  44. Ganeshkumar M, Sathishkumar M, Ponrasu T et al (2013) Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf B Biointerfaces 106:208–216. https://doi.org/10.1016/j.colsurfb.2013.01.035

    Article  Google Scholar 

  45. Sriram MI, Kanth SBM, Kalishwaralal K, Gurunathan S (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 5:753–762. https://doi.org/10.2147/IJN.S11727

    Article  Google Scholar 

  46. Shawkey AM, Rabeh MA, Abdulall AK, Abdellatif AO (2013) Green nanotechnology: anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv Life Sci Technol 13:60–70

    Google Scholar 

  47. Chairuangkitti P, Lawanprasert S, Roytrakul S et al (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol Vitr 27:330–338. https://doi.org/10.1016/j.tiv.2012.08.021

    Article  Google Scholar 

  48. Saravanakumar K, Chelliah R, MubarakAli D et al (2019) Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep 9:5787. https://doi.org/10.1038/s41598-019-42112-1

    Article  Google Scholar 

  49. Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 98:112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006

    Article  Google Scholar 

  50. Sun B, Hu N, Han L et al (2019) Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomedicine Biotechnol 47:4012–4019. https://doi.org/10.1080/21691401.2019.1575844

    Article  Google Scholar 

  51. Zheng Y, Zhang J, Zhang R et al (2019) Gold nano particles synthesized from Magnolia officinalis and anticancer activity in A549 lung cancer cells. Artif Cells Nanomedicine Biotechnol 47:3101–3109. https://doi.org/10.1080/21691401.2019.1645152

    Article  Google Scholar 

  52. Vijayan R, Joseph S, Mathew B (2018) Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomedicine Biotechnol 46:861–871. https://doi.org/10.1080/21691401.2017.1345930

    Article  Google Scholar 

  53. Muthukumar T, Sudhakumari SB et al (2016) Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem 51:384–391. https://doi.org/10.1016/j.procbio.2015.12.017

    Article  Google Scholar 

  54. Patil MP, Ngabire D, Thi HHP et al (2017) Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. J Clust Sci 28:119–132. https://doi.org/10.1007/s10876-016-1051-6

    Article  Google Scholar 

  55. Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202. https://doi.org/10.1016/j.jgeb.2016.05.007

    Article  Google Scholar 

  56. Taylor U, Barchanski A, Garrels W et al (2012) Toxicity of gold nanoparticles on somatic and reproductive cells. In: Advances in Experimental Medicine and Biology. pp 125–133

  57. Batchelor-McAuley C, Tschulik K, Neumann CCM et al (2014) Why are silver nanoparticles more toxic than bulk silver? Towards understanding the dissolution and toxicity of silver nanoparticles. Int J Electrochem Sci 9:1132–1138

  58. Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M (2020) Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem 8. https://doi.org/10.3389/fchem.2020.00376

  59. Kumar H, Bhardwaj K, Kuča K et al (2020) Flower-based green synthesis of metallic nanoparticles: applications beyond fragrance. Nanomaterials 10:766. https://doi.org/10.3390/nano10040766

    Article  Google Scholar 

  60. Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123. https://doi.org/10.2217/17435889.2.1.113

    Article  Google Scholar 

  61. Jeyaraj M, Renganathan A, Sathishkumar G et al (2015) Biogenic metal nanoformulations induce Bax/Bcl2 and caspase mediated mitochondrial dysfunction in human breast cancer cells (MCF 7). RSC Adv 5:2159–2166. https://doi.org/10.1039/C4RA11686K

    Article  Google Scholar 

  62. Gurunathan S, Lee K-J, Kalishwaralal K et al (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350. https://doi.org/10.1016/j.biomaterials.2009.08.008

    Article  Google Scholar 

  63. Adebayo IA, Gagman HA, Balogun WG et al (2019) Detarium microcarpum, Guiera senegalensis, and Cassia siamea induce apoptosis and cell cycle arrest and inhibit metastasis on MCF7 breast cancer cells. Evidence-Based Complement Altern Med 2019:1–12. https://doi.org/10.1155/2019/6104574

    Article  Google Scholar 

  64. Gurunathan S, Han J, Park JH, Kim J-H (2014) A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 9:248. https://doi.org/10.1186/1556-276X-9-248

    Article  Google Scholar 

  65. Patil MP, Jin X, Simeon NC et al (2018) Anticancer activity of Sasa borealis leaf extract-mediated gold nanoparticles. Artif Cells Nanomedicine Biotechnol 46:82–88. https://doi.org/10.1080/21691401.2017.1293675

    Article  Google Scholar 

  66. Namazi Sarvestani N, Sepehri H, Delphi L, Moridi Farimani M (2018) Eupatorin and salvigenin potentiate doxorubicin-induced apoptosis and cell cycle arrest in HT-29 and SW948 human colon cancer cells. Asian Pac J Cancer Prev 19:131–139. https://doi.org/10.22034/APJCP.2018.19.1.131

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Department of Botany, Periyar University, Salem, for accessing the lab facilities to carry out this research successfully.

Author information

Authors and Affiliations

Authors

Contributions

Venkatachalam Balamurugan: conceptualization, data curation, methodology, visualization, writing—original draft, and writing—review and editing.

Govindasamy Balasubramani: conceptualization, data curation, methodology, visualization, writing—original draft, and writing—review and editing.

Corresponding author

Correspondence to Govindasamy Balasubramani.

Ethics declarations

Ethical approval

The study does not require any ethical approval, where no test animals employed against ethical guidelines

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, V., Balasubramani, G. Green synthesis and cytotoxicity evaluation of silver and gold nanoparticles using Pandanus canaranus leaf extract on Artemia salina and A549 lung cancer cells. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03586-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03586-8

Keywords

Navigation