Skip to main content
Log in

Phosphoric acid-activated bamboo hydrochar for methylene blue adsorption: isotherm and kinetic studies

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Bamboo-based activated carbon was produced by using two different methods: single-stage (direct activation) and two-stage method (HTC pre-treatment and activation) by using H3PO4 as the activator. This study aims to analyse and compare the physicochemical characteristics and the adsorption performance of bamboo-based activated carbon derived from these two methods. In addition, the effect of different HTC feedwater on the hydrochar properties was also studied for the two-stage method by varying the HTC feedwater (0.5 M HCl, 0.5 M NaOH, and distilled water). The results showed that acidic feedwater could produce hydrochar with a relatively large surface area and good adsorption capacity for methylene blue. As such, the hydrochar produced using acidic (0.5 M HCl) feedwater HTC (HCA) was chosen to be activated. The performance of BAH in removing methylene blue was compared with bamboo-activated carbon (BAC) which was produced through direct activation. BAH with a surface area of 1798 m2 g−1 showed an outstanding maximum removal capacity of methylene blue at 558 mg g−1, which is approximately twice the removal performance of BAC with a surface area of 1278 m2 g−1. The equilibrium adsorption for both adsorbents was best fitted with Langmuir isotherm, while the kinetics were best described through a pseudo-second-order model. The intraparticle diffusion model showed that the adsorption is not solely limited to it, and other mechanisms might influence the adsorption behaviour. The multilinearity of the intraparticle diffusion model is explained by the boundary layer diffusion that usually gives the first portion of the plot, while the remaining linear portion can be described through intraparticle diffusion. In conclusion, HTC-pretreated activated bamboo is an effective adsorbent for methylene blue removal in an aqueous solution, and the finding of this study can help in devising a suitable activation strategy for biomass-based activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Data will be made available upon request.

References

  1. Brenot A et al (2019) “Water footp rint in fashion and luxury industry,” Water in Textiles and Fashion. 95–113. https://doi.org/10.1016/b978-0-08-102633-5.00006-3.

  2. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manage 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad AA, Idris A, Hameed BH (2014) Modeling of disperse dye adsorption onto bamboo-based activated carbon in fixed-bed column. Desalin Water Treat 52(1–3):248–256. https://doi.org/10.1080/19443994.2013.794012

    Article  CAS  Google Scholar 

  4. Patawat C, Silakate K, Chuan-Udom S, Supanchaiyamat N, Hunt AJ, Ngernyen Y (2020) Preparation of activated carbon from Dipterocarpus alatus fruit and its application for methylene blue adsorption. RSC Adv 10(36):21082–21091. https://doi.org/10.1039/d0ra03427d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ip AWM, Barford JP, McKay G (2008) Production and comparison of high surface area bamboo derived active carbons. Biores Technol 99(18):8909–8916. https://doi.org/10.1016/j.biortech.2008.04.076

    Article  CAS  Google Scholar 

  6. Hameed BH, Din ATM, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141(3):819–825. https://doi.org/10.1016/j.jhazmat.2006.07.049

    Article  CAS  PubMed  Google Scholar 

  7. Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225(1–3):13–28. https://doi.org/10.1016/j.desal.2007.07.005

    Article  CAS  Google Scholar 

  8. Bystriakova N, Kapos V, Lysenko I, Stapleton C (2003) Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodivers Conserv 12:1833–1841. https://doi.org/10.1023/A:1024139813651

    Article  Google Scholar 

  9. Supee AH and Zaini MAA (2021) “Bamboo residue as a potential activated carbon for removal of water pollutants: a commentary”. Int Wood Prod J 0(0):1–8. https://doi.org/10.1080/20426445.2021.2019175

  10. Akinlabi ET, Anane-fenin K, Akwada DR and Plant TM, Bamboo (2017) The Multipurpose Plant

  11. Cheung WH, Lau SSY, Leung SY, Ip AWM, Mckay G (2012) Characteristics of chemical modified activated carbons from bamboo scaffolding. Chin J Chem Eng 20(3):515–523. https://doi.org/10.1016/S1004-9541(11)60213-9

    Article  CAS  Google Scholar 

  12. Negara DNKP, Nindhia TGT, Surata IW, Hidajat F, Sucipta M (2020) Textural characteristics of activated carbons derived from tabah bamboo manufactured by using H3PO4 chemical activation. Materials Today: Proceedings 22:148–155. https://doi.org/10.1016/j.matpr.2019.08.030

    Article  CAS  Google Scholar 

  13. Pradhananga R et al (2017) Wool carpet dye adsorption on nanoporous carbon materials derived from agro-product. Journal of Carbon Research 3(4):12. https://doi.org/10.3390/c3020012

    Article  CAS  Google Scholar 

  14. Liu H et al (2020) 3D hierarchical porous activated carbon derived from bamboo and its application for textile dye removal: kinetics, isotherms, and thermodynamic studies. Water Air Soil Pollut 231(10):504. https://doi.org/10.1007/s11270-020-04883-6

    Article  CAS  Google Scholar 

  15. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  CAS  Google Scholar 

  16. Maniscalco MP, Volpe M, Messineo A (2020) Hydrothermal carbonization as a valuable tool for energy and environmental applications: a review. Energies (Basel) 13(16):4098. https://doi.org/10.3390/en13164098

    Article  CAS  Google Scholar 

  17. Prauchner MJ, Rodríguez-Reinoso F (2012) Chemical versus physical activation of coconut shell: a comparative study. Microporous Mesoporous Mater 152:163–171. https://doi.org/10.1016/j.micromeso.2011.11.040

    Article  CAS  Google Scholar 

  18. Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J 140(1–3):32–42. https://doi.org/10.1016/j.cej.2007.08.032

    Article  CAS  Google Scholar 

  19. Bahri M al, Calvo L, Gilarranz MA and Rodriguez JJ (2012) “Activated carbon from grape seeds upon chemical activation with phosphoric acid: application to the adsorption of diuron from water,” Chem Eng J 203:348–356. https://doi.org/10.1016/j.cej.2012.07.053.

  20. Genli N, Kutluay S, Baytar O, Şahin Ö (2022) Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. Int J Phytorem 24(1):88–100. https://doi.org/10.1080/15226514.2021.1926911

    Article  CAS  Google Scholar 

  21. Tran TH et al (2020) Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci Total Environ 725:138325. https://doi.org/10.1016/j.scitotenv.2020.138325

    Article  CAS  PubMed  Google Scholar 

  22. Li Y et al (2018) Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution. Biores Technol 261:257–264. https://doi.org/10.1016/j.biortech.2018.03.108

    Article  CAS  Google Scholar 

  23. Qian WC, Luo XP, Wang X, Guo M, Li B (2018) Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Ecotoxicol Environ Saf 157(April):300–306. https://doi.org/10.1016/j.ecoenv.2018.03.088

    Article  CAS  PubMed  Google Scholar 

  24. Mbarki F et al (2019) “Hydrothermal pre-treatment, an efficient tool to improve activated carbon performances”. Ind Crop Prod 140:111717. https://doi.org/10.1016/j.indcrop.2019.111717.

  25. Correa CR, Ngamying C, Klank D, Kruse A (2018) Investigation of the textural and adsorption properties of activated carbon from HTC and pyrolysis carbonizates. Biomass Conversion and Biorefinery 8(2):317–328. https://doi.org/10.1007/s13399-017-0280-8

    Article  CAS  Google Scholar 

  26. Silva MC et al (2021) H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: adsorption studies of methylene blue dye in batch and fixed bed systems. J Mol Liq 324:114771. https://doi.org/10.1016/j.molliq.2020.114771

    Article  CAS  Google Scholar 

  27. Ahmad AA, Hameed BH (2010) Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. J Hazard Mater 173(1–3):487–493. https://doi.org/10.1016/j.jhazmat.2009.08.111

    Article  CAS  PubMed  Google Scholar 

  28. Jian X et al (2018) Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environ Technol Innov 10:27–35. https://doi.org/10.1016/j.eti.2018.01.004

    Article  Google Scholar 

  29. Saka C, Şahin Ö, Kutluay S (2016) Cold plasma and microwave radiation applications for surface modification on the pistachio husk-based adsorbent and its effects on the adsorption of rhodamine B. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 38(3):339–346. https://doi.org/10.1080/15567036.2013.766659

    Article  CAS  Google Scholar 

  30. Kaouah F, Boumaza S, Berrama T, Trari M, Bendjama Z (2013) Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. J Clean Prod 54:296–306. https://doi.org/10.1016/j.jclepro.2013.04.038

    Article  CAS  Google Scholar 

  31. Islam MA, Benhouria A, Asif M, Hameed BH (2015) Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. J Taiwan Inst Chem Eng 52:57–64. https://doi.org/10.1016/j.jtice.2015.02.010

    Article  CAS  Google Scholar 

  32. Wilk M, Magdziarz A, Kalemba-Rec I, Szymańska-Chargot M (2020) Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: the effect of process parameters on hydrochar derived from acacia. Energy 202:117717. https://doi.org/10.1016/j.energy.2020.117717

    Article  CAS  Google Scholar 

  33. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805. https://doi.org/10.1016/j.cej.2015.08.014

    Article  CAS  Google Scholar 

  34. Zbair M et al (2020) Hydrothermal carbonization of argan nut shell: functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron. Waste and Biomass Valorization 11(4):1565–1584. https://doi.org/10.1007/s12649-018-00554-0

    Article  Google Scholar 

  35. de Lima HHC et al  (2021) “Enhanced removal of bisphenol A using pine-fruit shell-derived hydrochars: adsorption mechanisms and reusability,” J Hazard Mater 416:126167. https://doi.org/10.1016/j.jhazmat.2021.126167.

  36. Rehman S et al (2018) Role of sorption energy and chemisorption in batch methylene blue and Cu2+ adsorption by novel thuja cone carbon in binary component system: linear and nonlinear modeling. Environ Sci Pollut Res 25(31):31579–31592. https://doi.org/10.1007/s11356-018-2958-2

    Article  CAS  Google Scholar 

  37. Chen X, Ma X, Peng X, Lin Y, Wang J, Zheng C (2018) Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste. Biores Technol 267:167–174. https://doi.org/10.1016/j.biortech.2018.07.032

    Article  CAS  Google Scholar 

  38. Kiliç M, Apaydin-Varol E, Pütün AE (2012) Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Appl Surf Sci 261:247–254. https://doi.org/10.1016/j.apsusc.2012.07.155

    Article  CAS  Google Scholar 

  39. Heidari M, Dutta A, Acharya B and Mahmud S (2019) “A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion”. J Energy Inst 92 no. 6. Elsevier 1779–1799. https://doi.org/10.1016/j.joei.2018.12.003

  40. Khan TA, Saud AS, Jamari SS, Rahim MHA, Park JW and Kim HJ (2019) “Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review,” Biomass Bioenergy 130 Pergamon 105384. https://doi.org/10.1016/j.biombioe.2019.105384

  41. Sirajo L and Ahmad Zaini MA (2022) “Adsorption of water pollutants using H3PO4 -activated lignocellulosic agricultural waste: a mini review,” Toxin Rev 0(0):1–13. https://doi.org/10.1080/15569543.2022.2062775.

  42. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18(2):393–415. https://doi.org/10.1007/s10311-019-00955-0

    Article  CAS  Google Scholar 

  43. Chandana L, Krushnamurty K, Suryakala D, Subrahmanyam C (2018) Low-cost adsorbent derived from the coconut shell for the removal of hexavalent chromium from aqueous medium. Materials Today: Proceedings 26:44–51. https://doi.org/10.1016/j.matpr.2019.04.205

    Article  CAS  Google Scholar 

  44. Yağmur HK, Kaya İ (2021) Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. J Mol Struct 1232:130071. https://doi.org/10.1016/j.molstruc.2021.130071

    Article  CAS  Google Scholar 

  45. Zbair M et al (2018) Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ Sci Pollut Res 25(2):1869–1882. https://doi.org/10.1007/s11356-017-0634-6

    Article  CAS  Google Scholar 

  46. Batur E, Baytar O, Kutluay S, Horoz S, Şahin Ö (2021) A comprehensive new study on the removal of Pb (II) from aqueous solution by şırnak coal-derived char. Environmental Technology (United Kingdom) 42(3):505–520. https://doi.org/10.1080/09593330.2020.1811397

    Article  CAS  Google Scholar 

  47. Batur E and Kutluay S (2022) “Dynamic adsorption behavior of benzene, toluene, and xylene VOCs in single- and multi-component systems by activated carbon derived from defatted black cumin (Nigella sativa L.) biowaste”. J Environ Chem Eng 10(3):107565. https://doi.org/10.1016/j.jece.2022.107565

  48. Ece MŞ, Kutluay S and Şahin Ö (2021) “Silica-coated magnetic Fe3O4 nanoparticles as efficient nano-adsorbents for the improvement of the vapor-phase adsorption of benzene”. Int J Chem Technol 5(1):33–41. https://doi.org/10.32571/ijct.755761

  49. Ece MŞ and Kutluay S (2022) “Comparative and competitive adsorption of gaseous toluene, ethylbenzene, and xylene onto natural cellulose-modified Fe3O4 nanoparticles,” J Environ Chem Eng 10(2). https://doi.org/10.1016/j.jece.2022.107389

  50. Chan LS, Cheung WH, McKay G (2008) Adsorption of acid dyes by bamboo derived activated carbon. Desalination 218(1–3):304–312. https://doi.org/10.1016/j.desal.2007.02.026

    Article  CAS  Google Scholar 

  51. Inglezakis VJ, Zorpas AA (2012) Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin Water Treat 39(1–3):149–157. https://doi.org/10.1080/19443994.2012.669169

    Article  CAS  Google Scholar 

  52. Naganathan KK, Faizal ANM, Zaini MAA, Ali A (2020) Adsorptive removal of Bisphenol a from aqueous solution using activated carbon from coffee residue. Materials Today: Proceedings 47:1307–1312. https://doi.org/10.1016/j.matpr.2021.02.802

    Article  CAS  Google Scholar 

  53. Baytar O, Ceyhan AA, Şahin Ö (2020) Production of activated carbon from Elaeagnus angustifolia seeds using H3PO4 activator and methylene blue and malachite green adsorption. Int J Phytorem 23(7):1–11. https://doi.org/10.1080/15226514.2020.1849015

    Article  CAS  Google Scholar 

  54. Maia LS, da Silva AIC, Carneiro ES, Monticelli FM, Pinhati FR, Mulinari DR (2021) Activated carbon from palm fibres used as an adsorbent for methylene blue removal. J Polym Environ 29(4):1162–1175. https://doi.org/10.1007/s10924-020-01951-0

    Article  CAS  Google Scholar 

  55. Yusop MFM, Ahmad MA, Rosli NA, Manaf MEA (2021) Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: optimization and batch studies. Arab J Chem 14(6):103122. https://doi.org/10.1016/j.arabjc.2021.103122

    Article  CAS  Google Scholar 

  56. Misran E, Bani O, Situmeang EM, Purba AS (2022) Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alex Eng J 61(3):1946–1955. https://doi.org/10.1016/j.aej.2021.07.022

    Article  Google Scholar 

  57. Bello MO, Abdus-Salam N, Adekola FA, Pal U (2021) Isotherm and kinetic studies of adsorption of methylene blue using activated carbon from ackee apple pods. Chemical Data Collections 31:100607. https://doi.org/10.1016/j.cdc.2020.100607

    Article  CAS  Google Scholar 

  58. Kutluay S, Baytar O, Şahin Ö and Arran A (2020) “Optimization of process conditions for adsorption of methylene blue on formaldehyde-modified peanut shells using box-behnken experimental design and response surface methodology,” Eur J Tech 10(1):131–142. https://doi.org/10.36222/ejt.649205

  59. Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48. https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  60. Tang SH and Zaini MAA (2021) “Microporous activated carbon prepared from yarn processing sludge via composite chemical activation for excellent adsorptive removal of malachite green,” Surf Interfaces 22 November 2020 100832. https://doi.org/10.1016/j.surfin.2020.100832

  61. Hubbe MA, Azizian S and Douven S (2019) “Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review”. BioResources 14(3):7582–7626. https://doi.org/10.15376/biores.14.3.7582-7626

  62. Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153(1–3):1–8. https://doi.org/10.1016/j.cej.2009.04.042

    Article  CAS  Google Scholar 

  63. Guo H, Chen J, Weng W, Zheng Z, Wang D (2014) Adsorption behavior of Congo red from aqueous solution on La2O3-doped TiO2 nanotubes. J Ind Eng Chem 20(5):3081–3088. https://doi.org/10.1016/j.jiec.2013.11.047

    Article  CAS  Google Scholar 

  64. Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Biores Technol 98(15):2897–2904. https://doi.org/10.1016/j.biortech.2006.09.045

    Article  CAS  Google Scholar 

  65. Rudzinski W, Plazinski W (2008) Kinetics of solute adsorption at solid/solution interfaces: on the special features of the initial adsorption kinetics. Langmuir 24(13):6738–6744. https://doi.org/10.1021/la800743a

    Article  CAS  PubMed  Google Scholar 

  66. Singh S, Prajapati AK, Chakraborty JP, Mondal MK (2021) Adsorption potential of biochar obtained from pyrolysis of raw and torrefied Acacia nilotica towards removal of methylene blue dye from synthetic wastewater. Biomass Conversion and Biorefinery 1:3. https://doi.org/10.1007/s13399-021-01645-0

    Article  CAS  Google Scholar 

  67. Zhu L, Zhu P, You L, Li S (2019) Bamboo shoot skin: turning waste to a valuable adsorbent for the removal of cationic dye from aqueous solution. Clean Technol Environ Policy 21(1):81–92. https://doi.org/10.1007/s10098-018-1617-0

    Article  CAS  Google Scholar 

  68. Tomul F et al (2020) Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water. Sci Total Environ 726:137828. https://doi.org/10.1016/j.scitotenv.2020.137828

    Article  CAS  PubMed  Google Scholar 

  69. Sahu S et al (2020) Adsorption of methylene blue on chemically modified lychee seed biochar: dynamic, equilibrium, and thermodynamic study. J Mol Liq 315:113743. https://doi.org/10.1016/j.molliq.2020.113743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was part of AH Supee’s dissertation for the award of Master of Engineering.

Funding

The project is funded by UTM-ICONIC Grant No. 09G54.

Author information

Authors and Affiliations

Authors

Contributions

AH Supee (Research Associate): conceptualization, methodology, experimental work, analysis, first draft. MAA Zaini (Associate Professor): grant recipient, supervision, conceptualization, review, validation.

Corresponding author

Correspondence to Muhammad Abbas Ahmad Zaini.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supee, A.H., Zaini, M.A.A. Phosphoric acid-activated bamboo hydrochar for methylene blue adsorption: isotherm and kinetic studies. Biomass Conv. Bioref. 14, 8563–8577 (2024). https://doi.org/10.1007/s13399-022-03465-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03465-2

Keywords

Navigation