Skip to main content

Advertisement

Log in

3D Hierarchical Porous Activated Carbon Derived from Bamboo and Its Application for Textile Dye Removal: Kinetics, Isotherms, and Thermodynamic Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, activated carbons were prepared from bamboo via carbonization and successive KOH activation by tuning the post-treatment procedure. The resultant carbons possessed high surface area, high oxygen doping, and 3D hierarchical porous structure with interconnected micro-, meso- and macropores. These features resulted in ultra-excellent adsorption capacity for rhodamine B (> 1200 mg/g). Furthermore, the kinetic and isotherm experimental data were best described by pseudo-second kinetic model and Langmuir isotherm model, respectively. The adsorption of RhB onto the as-synthesized carbons was a spontaneous endothermic process. The π–π stacking, hydrogen bond, and acid-base interaction were proposed to account for the adsorption mechanism. Moreover, SiO2 in bamboo-based carbon functioned as frameworks and its removal via alkali treatment led to the collapse of porous structure, decreasing surface area, pore volume, and O heteroatom doping, consequently dropping the adsorption performance. Overall, bamboo as an abundant and renewable biomass could be considered as a potential precursor for the production of excellent adsorbent for wastewater purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Angin, D. (2014). Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresource Technology, 168, 259–266.

    Article  CAS  Google Scholar 

  • Basta, A. H., Fierro, V., El-Saied, H., & Celzard, A. (2009). 2-steps KOH activation of rice straw: an efficient method for preparing high performance activated carbons. Bioresource Technology, 100, 3941–3948.

    Article  CAS  Google Scholar 

  • Cazetta, A. L., Pezoti, O., Bedin, K. C., Silva, T. L., Junior, A. P., Asefa, T., & Almeida, V. C. (2016). Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustainable Chemistry & Engineering, 4, 1058–1068.

    Article  CAS  Google Scholar 

  • Chernavskii, P. A., Pankina, G. V., Kazantsev, R. V., & Eliseev, O. L. (2018). Potassium as a structural promoter for an iron/activated carbon catalyst: unusual effect of component deposition order on magnetite particle size and catalytic behavior in Fischer-Tropsch synthesis. ChemCatChem, 10, 1313–1320.

    Article  CAS  Google Scholar 

  • Deng, H., Yang, L., Tao, G., & Dai, J. (2009). Preparation and characterizations of activated carbons from cotton stalk by microwave-assisted chemical activation and its application in methylene blue adsorption. Journal of Hazardous Materials, 166, 1514–1521.

    Article  CAS  Google Scholar 

  • Du, H. Q., Cui, R. R., Zhou, G. M., Shi, Y. J., Xu, X. J., Fan, W. L., & Lu, Y. L. (2010). The responses of moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecologica Sinica, 30, 257–263.

    Article  Google Scholar 

  • Fernandez, M. E., Ledesma, B., Román, S., Bonelli, P. R., & Cukierman, A. L. (2015). Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresource Technology, 183, 221–228.

    Article  CAS  Google Scholar 

  • Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., & Orfao, J. J. M. (1999). Modification of the surface chemistry of activated carbons. Carbon, 37, 1379–1389.

    Article  CAS  Google Scholar 

  • Gad, H. M. H., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168, 1070–1081.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Nasab, A. G., Khodadoust, S., Rajabi, M., & Azizian, S. (2014). Applications of activated carbons as the adsorbents for methylene blue removal: Kinetics and equilibrium studies. Journal of Industrial and Engineering Chemistry, 20, 2317–2324.

    Article  CAS  Google Scholar 

  • Guo, Z. Z., Zhang, J., Liu, H., & Kang, Y. (2017). Development of a nitrogen-functionalized carbon adsorbent derived from biomass waste by diammonium hydrogen phosphate activation for Cr(VI) removal. Powder Technology, 318, 459–464.

    Article  CAS  Google Scholar 

  • Joah, H., Jeong, H. K., Lee, J.-W., Lee, J. H., & Kwang, C. R. (2017). An effective approach to preparing partially graphitic activated carbon derived from structurally separated pitch pine biomass. Carbon, 118, 431–437.

    Article  Google Scholar 

  • Lee, D. Y., An, G. H., & Ahn, H. J. (2017). High-surface-area tofu based activated porous carbon for electrical double-layer capacitors. Journal of Industrial and Engineering Chemistry, 52, 121–127.

    Article  CAS  Google Scholar 

  • Liew, R. K., Azwar, E., Yek, P. N. Y., Lim, X. Y., Cheng, C. K., Ng, J.-H., Jusoh, A., Lam, W. H., Ibrahim, M. D., Ma, N. L., & Lam, S. S. (2018). Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresource Technology, 266, 1–10.

    Article  CAS  Google Scholar 

  • Liou, T. H. (2010). Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal, 158, 129–142.

    Article  CAS  Google Scholar 

  • Liou, T., & Wu, S. (2009). Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions. Journal of Hazardous Materials, 171, 693–703.

    Article  CAS  Google Scholar 

  • Ma, P. Y., Wang, S. Y., Wang, T., Wu, J. Z., Xing, X. J., & Zhang, X. W. (2019). Effect of bifunctional acid on the porosity improvement of biomass-derived activated carbon for methylene blue adsorption. Environmental Science and Pollution Research, 26, 30119–30129.

    Article  CAS  Google Scholar 

  • Maneerung, T., Liew, J., Dai, Y. J., Kawi, S., Chong, C., & Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350–359.

    Article  CAS  Google Scholar 

  • Mohammed, D., & Tanweer, A. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1–21.

    Article  Google Scholar 

  • Ozhan, A., Sahin, O., Kucuk, M. M., & Saka, C. (2014). Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose, 21, 2457–2467.

    Article  CAS  Google Scholar 

  • Rozada, F., Otero, M., García, A. I., & Morán, A. (2007). Application in fixed-bed systems of adsorbents obtained from discarded tyres and sewage sludge. Dyes and Pigments, 72, 47–56.

    Article  Google Scholar 

  • Sanchez-Silva, L., Lopez-Gonzalez, D., Villasenor, J., Sanchez, P., & Valverde, J. L. (2012). Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, 163–172.

    Article  CAS  Google Scholar 

  • Saucier, C., Adebayo, M. A., Lima, E. C., Cataluna, R., Thue, P. S., Prola, L. D. T., Puchana-Rosero, M. J., Machado, F. M., Pavan, F. A., & Dotto, G. L. (2015). Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. Journal of Hazardous Materials, 289, 18–27.

    Article  CAS  Google Scholar 

  • Skouteris, G., Saroj, D., Melidis, P., Hai, F. I., & Ouki, S. (2015). The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - a critical review. Bioresource Technology, 185, 399–410.

    Article  CAS  Google Scholar 

  • Su, X. L., Chen, J. R., Zheng, G. P., Yang, J. H., Guan, X. X., Liu, P., & Zheng, X. C. (2018). Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Applied Surface Science, 436, 327–336.

    Article  CAS  Google Scholar 

  • Sun, J., Ding, Z. Q., Gao, Q., Xun, H., Tang, F., & Xia, E. D. (2016). Major chemical constituents of bamboo shoots (phyllostachys pubescens): qualitative and quantitative research. Journal of Agricultural and Food Chemistry, 64, 2498–2505.

    Article  CAS  Google Scholar 

  • Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fiber activated carbon. Chemical Engineering Journal, 127, 111–119.

    Article  CAS  Google Scholar 

  • Tao, H. C., Zhang, H. R., Li, J. B., & Ding, W. Y. (2015). Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresource Technology, 192, 611–617.

    Article  CAS  Google Scholar 

  • Teng, Y., Liu, E. H., Ding, R., Liu, K., Liu, R. H., Wang, L., Yang, Z., & Jiang, H. X. (2016). Bean dregs-based activated carbon/copper ion supercapacitors. Electrochimica Acta, 194, 394–404.

    Article  CAS  Google Scholar 

  • Urita, K., Urita, C., Fujita, K., Horio, K., Yoshida, M., & Moriguchia, I. (2017). The ideal porous structure of EDLC carbon electrodes with extremely high capacitance. Nanoscale, 9, 15643–15649.

    Article  CAS  Google Scholar 

  • Yang, H. P., Yan, R., Chen, H. P., Lee, D. H., & Zheng, C. G. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788.

    Article  CAS  Google Scholar 

  • Yang, J., Yu, J., Zhao, W., Li, Q., Wang, Y., & Xu, G. W. (2012). Upgrading ash-rich activated carbon from distilled spirit lees. Industrial and Engineering Chemistry Research, 51, 6037–6043.

    Article  CAS  Google Scholar 

  • Yao, L., Yang, J. J., Zhang, P. X., & Deng, L. B. (2018). In situ surface decoration of Fe3C/Fe3O4/C nanosheets: towards bi-functional activated carbons with supercapacitance and efficient dye adsorption. Bioresource Technology, 256, 208–215.

    Article  CAS  Google Scholar 

  • Zhao, Y., Fang, F., Xiao, H. M., Feng, Q. P., Xiong, L. Y., & Fu, S. Y. (2015). Preparation of pore-size controllable activated carbon fibers from bamboo fibers with superior performance for xenon storage. Chemical Engineering Journal, 270, 528–534.

    Article  CAS  Google Scholar 

  • Zhu, G. T., Xing, X. J., Wang, J. Q., & Zhang, X. W. (2017). Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived activated carbon. Journal of Materials Science, 52, 7664–7676.

    Article  CAS  Google Scholar 

  • Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L. M., Lou, G. B., Zhu, E. H., Chen, H., Shen, Z. H., Bao, B. F., & Fu, S. Y. (2018). Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science, 181, 36–45.

    Article  CAS  Google Scholar 

  • Zielke, U., Huttinger, K. J., & Hoffman, W. P. (1996). Surface-oxidized carbon fibers. 1. Surface structure and chemistry. Carbon, 34, 983–998.

    Article  CAS  Google Scholar 

  • Zou, J. L., Dai, Y., Wang, X., Ren, Z. Y., Tian, C. G., Pan, K., Li, S., Abuobeidah, M., & Fu, H. G. (2013). Structure and adsorption properties of sewage sludge-derived carbons with removal of inorganic impurities and high porosity. Bioresource Technology, 142, 209–217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xu, C., Wei, X. et al. 3D Hierarchical Porous Activated Carbon Derived from Bamboo and Its Application for Textile Dye Removal: Kinetics, Isotherms, and Thermodynamic Studies. Water Air Soil Pollut 231, 504 (2020). https://doi.org/10.1007/s11270-020-04883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04883-6

Keywords

Navigation