Skip to main content
Log in

Xylooligosaccharide production by optimized sulfuric, acetic acid, and liquid hot water treatment of sugarcane leaves

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The content of xylan in sugarcane straw (culm top and leaves) is interesting to produce xylooligosaccharides (XOS), oligomers composed of xylose, which provide numerous health benefits. XOS were produced in this study by two types of treatment using sugarcane leaves: liquid hot water (LHW) and dilute acid (sulfuric and acetic acids), aiming to minimize sugar degradation production. A central composite design with axial points was performed to evaluate the effects of the independent variables on the hydrolysis production of XOS. Hydrolysis with acetic acid resulted in the conversion of xylan into XOS of 22.78% with 2% (%, m/v) of acid at 180 °C for 35 min. Hydrolysis with sulfuric acid resulted in XOS yield of 62.18% with 2% (%, m/v) of acid at 79.55 °C for 35 min. The LHW treatment using leaves resulted in XOS yield of 20.71% at 130 °C for 35 min. The LHW and dilute acid resulted in 0.018% and 0.195% (m/m) of furfural, respectively. For each ton of sugarcane leaves, an XOS production of 206.44 kg, 75.63 kg, and 68.69 kg can be estimated using sulfuric acid, acetic acid, and LHW, successively. The most effective treatment for XOS production was hydrolysis with dilute sulfuric acid; however, LHW generated lower degradation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Tapia Carpio L, Simone de Souza F (2019) Competition between second-generation ethanol and bioelectricity using the residual biomass of sugarcane: effects of uncertainty on the production mix. Molecules 24:369. https://doi.org/10.3390/molecules24020369

    Article  Google Scholar 

  2. Melati RB, Schmatz AA, Pagnocca FC et al (2017) Sugarcane bagasse: production, composition, properties, and feedstock potential. In: Murphy R (ed) Sugarcane Prod Syst Uses Econ Importance. Nova Science Publishers, Hauppauge, pp 1–38 Available from: https://novapublishers.com/shop/sugarcane-production-systems-uses-and-economic-importance/

  3. Melati RB, Shimizu FL, Oliveira G et al (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenerg Res 12:1–20. https://doi.org/10.1007/s12155-018-9941-0

    Article  Google Scholar 

  4. de Moraes LAA, de Conti Medina C, de Melo TR et al (2021) Does the Partial Raw Cane System Present Possibilities to Increase Sugarcane Field Longevity in Clayey Soil? Sugar Tech 23:999–1009. https://doi.org/10.1007/S12355-021-00993-5/TABLES/3

    Article  Google Scholar 

  5. de Aquino GS, de Conti MC, Shahab M et al (2018) Does straw mulch partial-removal from soil interfere in yield and industrial quality sugarcane? A long term study. Ind Crops Prod 111:573–578. https://doi.org/10.1016/j.indcrop.2017.11.026

    Article  Google Scholar 

  6. Forsan CF, de Freitas C, Masarin F, Brienzo M (2021) Xylooligosaccharide production from sugarcane bagasse and leaf using Aspergillus versicolor endoxylanase and diluted acid. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01403-2

  7. de Freitas C, Terrone CC, Masarin F et al (2021) In vitro study of the effect of xylooligosaccharides obtained from banana pseudostem xylan by enzymatic hydrolysis on probiotic bacteria. Biocatal Agric Biotechnol 33:101973. https://doi.org/10.1016/j.bcab.2021.101973

    Article  Google Scholar 

  8. Mhetras N, Mapre V, Gokhale D (2019) Xylooligosaccharides (XOS) as emerging prebiotics: its production from lignocellulosic material. AiM 09:14–20. https://doi.org/10.4236/aim.2019.91002

    Article  Google Scholar 

  9. Zamora Zamora HD, de Freitas C, Bueno D et al (2020) Biomass fractionation based on enzymatic hydrolysis for biorefinery systems. In: Verma P (ed) Biorefineries: a step towards renewable and clean energy. Springer Singapore, Singapore, pp 217–254

    Chapter  Google Scholar 

  10. Shimizu FL, Zamora HDZ, Schmatz AA et al (2020) Biofuels generation based on technical process and biomass quality. In: Srivastava N, Srivastava M, Mishra PK, Gupta VK (eds) Biofuel production technologies: critical analysis for sustainability. Springer Singapore, Singapore, pp 37–64

    Chapter  Google Scholar 

  11. Melati RB, Sass DC, Pagnocca FC, Brienzo M (2021) Anatomic influence of sugarcane biomass on xylan solubilization. Ind Crops Prod 164:113357. https://doi.org/10.1016/j.indcrop.2021.113357

    Article  Google Scholar 

  12. Fernandes ÉS, Bueno D, Pagnocca FC, Brienzo M (2020) Minor biomass particle size for an efficient cellulose accessibility and enzymatic hydrolysis. ChemistrySelect 5:7627–7631. https://doi.org/10.1002/slct.202001008

    Article  Google Scholar 

  13. ABNT Catalogo. https://www.abntcatalogo.com.br/norma.aspx?ID=395361. Accessed 5 Oct 2021

  14. Gouveia ER, do Nascimento RT, Souto-Maior AM, de Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quím Nova 32:1500–1503. https://doi.org/10.1590/S0100-40422009000600026

    Article  Google Scholar 

  15. Tsoutsos T (2010) Modelling hydrolysis and fermentation processes in lignocelluloses-to-bioalcohol production. In: Bioalcohol Production. Elsevier, 340–362

  16. Vallejos ME, Felissia FE, Kruyeniski J, Area MC (2015) Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Ind Crops Prod 67:1–6. https://doi.org/10.1016/j.indcrop.2014.12.058

    Article  Google Scholar 

  17. Vena PF, Brienzo M, García-Aparicio M et al (2015) Dilute sulphuric acid extraction of hemicelluloses from eucalyptus grandis and its effect on kraft and soda-AQ pulp and handsheet properties. Cellu Chem Technol 49:1

    Google Scholar 

  18. Mafei TDT, Neto FSPP, Peixoto G et al (2020) Extraction and characterization of hemicellulose from eucalyptus by-product: assessment of enzymatic hydrolysis to produce xylooligosaccharides. Appl Biochem Biotechnol 190:197–217. https://doi.org/10.1007/s12010-019-03076-0

  19. Szczerbowski D, Pitarelo AP, Zandoná Filho A, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohyd Polym 114:95–101. https://doi.org/10.1016/j.carbpol.2014.07.052

    Article  Google Scholar 

  20. Costa SM, Aguiar A, Luz SM et al (2015) Sugarcane straw and its cellulose fraction as raw materials for obtainment of textile fibers and other bioproducts. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides. Springer International Publishing, Cham, pp 513–533

    Chapter  Google Scholar 

  21. Brienzo M, Ferreira S, Vicentim MP et al (2014) Comparison study on the biomass recalcitrance of different tissue fractions of sugarcane Culm. Bioenerg Res 7:1454–1465. https://doi.org/10.1007/s12155-014-9487-8

    Article  Google Scholar 

  22. Wen P, Zhang T, Wang J et al (2019) Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment. Biotechnol Biofuels 12:87. https://doi.org/10.1186/s13068-019-1423-x

    Article  Google Scholar 

  23. Zhang H, Xu Y, Yu S (2017) Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Biores Technol 234:343–349. https://doi.org/10.1016/j.biortech.2017.02.094

    Article  Google Scholar 

  24. Zhou X, Xu Y (2019) Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Biores Technol 282:81–87. https://doi.org/10.1016/j.biortech.2019.02.129

    Article  Google Scholar 

  25. Ying W, Fang X, Xu Y, Zhang J (2022) Combined acetic acid and enzymatic hydrolysis for xylooligosaccharides and monosaccharides production from poplar. Biomass Bioenerg 158:106377. https://doi.org/10.1016/j.biombioe.2022.106377

    Article  Google Scholar 

  26. Zhao J, Zhang X, Zhou X, Xu Y (2021) Selective production of xylooligosaccharides by Xylan Hydrolysis Using a Novel Recyclable and Separable Furoic Acid. Front Bioeng Biotechnol 9:240. https://doi.org/10.3389/FBIOE.2021.660266/BIBTEX

    Article  Google Scholar 

  27. Guo J, Gu Y, Zhou X et al (2021) Cascade temperature-arising strategy for xylo-oligosaccharide production from lignocellulosic biomass with acetic acid catalyst recycling operation. Renew Energy 175:625–637. https://doi.org/10.1016/J.RENENE.2021.05.066

    Article  Google Scholar 

  28. Martins RP, Schmatz AA, de Freita LA et al (2021) Solubilization of hemicellulose and fermentable sugars from bagasse, stalks, and leaves of sweet sorghum. Ind Crops Prod 170:113813. https://doi.org/10.1016/J.INDCROP.2021.113813

    Article  Google Scholar 

  29. Riley GL, Brienzo M, Flavia A et al (2016) Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production. The sugarcane has been used for centuries for sugar production and, in the recent decades, for ethanol fuel production through biotechnological routes. From sugar and ethanol industry a large amount

  30. Surek E, Buyukkileci AO (2017) Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohyd Polym 174:565–571. https://doi.org/10.1016/J.CARBPOL.2017.06.109

    Article  Google Scholar 

  31. Chen X, Cao X, Sun S et al (2018) Evaluating the production of monosaccharides and xylooligosaccharides from the pre-hydrolysis liquor of kraft pulping process by acid and enzymatic hydrolysis. Ind Crops Prod 124:906–911. https://doi.org/10.1016/J.INDCROP.2018.08.071

    Article  Google Scholar 

  32. Candido JP, Claro EMT, de Paula CBC et al (2020) Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World J Microbiol Biotechnol 36(3):1–12. https://doi.org/10.1007/S11274-020-02820-7

    Article  Google Scholar 

  33. Wang T, Li C, Song M, Fan R (2019) Xylo-oligosaccharides preparation through acid hydrolysis of hemicelluloses isolated from press-lye. Grain & Oil Science and Technology 2:73–77. https://doi.org/10.1016/J.GAOST.2019.07.001

    Article  Google Scholar 

  34. Wang Y, Cao X, Zhang R et al (2018) Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Adv 8:35211–35217. https://doi.org/10.1039/C8RA07140C

    Article  Google Scholar 

  35. Marcondes WF, Milagres AMF, Arantes V (2020) Co-production of xylo-oligosaccharides, xylose and cellulose nanofibrils from sugarcane bagasse. J Biotechnol 321:35–47. https://doi.org/10.1016/j.jbiotec.2020.07.001

    Article  Google Scholar 

  36. Parajó JC, Garrote G, Cruz JM, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120. https://doi.org/10.1016/J.TIFS.2003.09.009

    Article  Google Scholar 

  37. Xu J, Liu B, Wu L et al (2019) A waste-minimized biorefinery scenario for the hierarchical conversion of agricultural straw into prebiotic xylooligosaccharides, fermentable sugars and lithium-sulfur batteries. Ind Crops Prod 129:269–280. https://doi.org/10.1016/J.INDCROP.2018.12.002

    Article  Google Scholar 

  38. Dias LM, Neto FSPP, Brienzo M et al (2022) Experimental design, modeling, and optimization of production of xylooligosaccharides by hydrothermal pretreatment of sugarcane bagasse and straw. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02151-z

  39. Forsan CF, Paz Cedeño FR, Masarin F, Brienzo M (2021) Xylooligosaccharides production by optimized autohydrolysis, sulfuric and acetic acid hydrolysis for minimum sugar degradation production. Bioactive Carbohydrates and Dietary Fibre 26:100268. https://doi.org/10.1016/j.bcdf.2021.100268

    Article  Google Scholar 

  40. Kamireddy SR, Li J, Tucker M et al (2013) Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind Eng Chem Res 52:1775–1782. https://doi.org/10.1021/ie3019609

    Article  Google Scholar 

  41. Miléo PC, Mulinari DR, Baptista CARP et al (2011) Mechanical behaviour of polyurethane from castor oil reinforced sugarcane straw cellulose composites. Procedia Eng 10:2068–2073. https://doi.org/10.1016/j.proeng.2011.04.342

    Article  Google Scholar 

  42. Ávila PF, Forte MBS, Goldbeck R (2018) Evaluation of the chemical composition of a mixture of sugarcane bagasse and straw after different pretreatments and their effects on commercial enzyme combinations for the production of fermentable sugars. Biomass Bioenerg 116:180–188. https://doi.org/10.1016/j.biombioe.2018.06.015

    Article  Google Scholar 

  43. Hernández-Pérez AF, de Arruda PV, Felipe MD (2016) Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Brazilian J Microbiol 47:489–496. https://doi.org/10.1016/j.bjm.2016.01.019

    Article  Google Scholar 

  44. Canilha L, de LacerdaBrambilla Rodrigues RC, Fernandes FA et al (2013) Bioconversion of hemicellulose from sugarcane biomass into sustainable products. In: Chandel A (ed) Sustainable degradation of lignocellulosic biomass - techniques, applications and commercialization. InTech

    Google Scholar 

Download references

Funding

This research received the support of the Brazilian Council for Research and Development (CNPq, process 303239/2021–2) and São Paulo Research Foundation (FAPESP, process 2017/22401–8).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Michel Brienzo; formal analysis: Caroline Froes Forsan, Alison Schmatz; resources: Michel Brienzo, Fernando Masarin; writing original draft: Caroline Froes Forsan; manuscript revision: Michel Brienzo, Alison Schmatz, Fernando Masarin.

Corresponding author

Correspondence to Michel Brienzo.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsan, C.F., Schmatz, A., Masarin, F. et al. Xylooligosaccharide production by optimized sulfuric, acetic acid, and liquid hot water treatment of sugarcane leaves. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03316-0

Keywords

Navigation