Skip to main content

Advertisement

Log in

Biomass biorefinery for biopolymers isolation, fermentable sugars, and briquettes production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study aimed to extract xylan by hydrogen peroxide in an alkaline medium, recover lignin, and evaluate the use of the pretreated material in the production of glucose via enzymatic hydrolysis. The formation of briquettes using different anatomical fractions of sugarcane (bagasse, epidermis-free stem, external fraction containing epidermis, and bagasse with the addition of lignin) was also evaluated. After xylan extraction with a yield of 62.71%, 33.6 2% of lignin was recovered by acid precipitation. The enzymatic hydrolysis of the pretreated material resulted in 71.10% of glucose. The briquettes made from the epidermis-free stem and external fraction showed better results in terms of ash, volatiles, and fixed carbon contents. Sugarcane bagasse generated briquettes with an energy density of 23,544.9 MJ/m3, and an external fraction of 25,711.8 MJ/m3. For the volumetric expansion, the briquettes made from bagasse and bagasse with the addition of lignin (recovered from xylan solubilization) presented less volumetric variation. The briquettes made from the external fraction with and without heating showed durability of over 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alves RC, Melati RB, Casagrande GMS et al (2021) Sieving process selects sugarcane bagasse with lower recalcitrance to xylan solubilization. J Chem Technol Biotechnol 96:327–334. https://doi.org/10.1002/jctb.6541

    Article  Google Scholar 

  2. Melati RB, Shimizu FL, Oliveira G et al (2019) Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. Bioenergy Res 12:1–20. https://doi.org/10.1007/s12155-018-9941-0

    Article  Google Scholar 

  3. Martins RP, Schmatz AA, de Freita LA et al (2021) Solubilization of hemicellulose and fermentable sugars from bagasse, stalks, and leaves of sweet sorghum. Ind Crops and Prod 170:113813. https://doi.org/10.1016/J.INDCROP.2021.113813

    Article  Google Scholar 

  4. de Figueiredo FC, Carvalho AFA, Brienzo M et al (2017) Chemical input reduction in the arabinoxylan and lignocellulose alkaline extraction and xylooligosaccharides production. Bioresour Technol 228:164–170. https://doi.org/10.1016/j.biortech.2016.12.097

    Article  Google Scholar 

  5. Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204. https://doi.org/10.1016/j.bej.2009.05.012

    Article  Google Scholar 

  6. Monte JR, Brienzo M, Milagres AMF (2011) Utilization of pineapple stem juice to enhance enzyme-hydrolytic efficiency for sugarcane bagasse after an optimized pre-treatment with alkaline peroxide. Appl Energy 88:403–408. https://doi.org/10.1016/j.apenergy.2010.08.009

    Article  Google Scholar 

  7. Shimizu FL, de Azevedo GO, Coelho LF et al (2020) Minimum Lignin and Xylan Removal to Improve Cellulose Accessibility. Bioenergy Res 13:775–785. https://doi.org/10.1007/s12155-020-10120-z

    Article  Google Scholar 

  8. Liu X, Li Y, Ewulonu CM et al (2019) Mild Alkaline Pretreatment for Isolation of Native-Like Lignin and Lignin-Containing Cellulose Nanofibers (LCNF) from Crop Waste. ACS Sustain Chem Eng 7:14135–14142. https://doi.org/10.1021/ACSSUSCHEMENG.9B02800/ASSET/IMAGES/MEDIUM/SC9B02800_M003.GIF

    Article  Google Scholar 

  9. Hubbe MA, Alén R, Paleologou M et al (2019) Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: A review. BioResources 14:2300–2351. https://doi.org/10.15376/BIORES.14.1.2300-2351

    Article  Google Scholar 

  10. Brand MA, de Barnasky RRS, Carvalho CA, et al (2018) Thermogravimetric analysis for characterization of the pellets produced with different forest and agricultural residues. Cienc Rural 48. https://doi.org/10.1590/0103-8478cr20180271

  11. Nones DL, Brand MA, Ampessan CGM, Friederichs G (2017) Biomassa residual agrícola e florestal na produção de compactados para geração de energia. Rev Cienc Agrovet 16:155–164. https://doi.org/10.5965/223811711622017155

    Article  Google Scholar 

  12. Dias JMCDS, Souza DT De, Braga M, et al (2012) Produção de briquetes e péletes a partir de resíduos agrícolas, agroindustrais e florestais. Embrapa Publicações. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/952626/producao-de-briquetes-e-peletes-a-partir-de-residuos-agricolas-agroindustriais-e-florestais. Accessed 30 November 2021

  13. Oshiro TL (2016) Produção e caracterização de briquetes produzidos com resíduos lignocelulosicos. Universidade Tecnológica Federal do Paraná - Campus Londrina

  14. Gouvêa A de FG, Carvalho AMML, Silva CM, et al (2017) Estudo da adição da lignina Kraft nas Propriedades mecânicas dos Briquetes de resíduos da indústria moveleira. Cienc Florest 27:1029–1036

  15. Melati RB, Sass DC, Pagnocca FC, Brienzo M (2021) Anatomic influence of sugarcane biomass on xylan solubilization. Ind Crops Prod 164. https://doi.org/10.1016/j.indcrop.2021.113357

  16. Brienzo M, Ferreira S, Vicentim MP et al (2014) Comparison Study on the Biomass Recalcitrance of Different Tissue Fractions of Sugarcane Culm. Bioenergy Res 7:1454–1465. https://doi.org/10.1007/s12155-014-9487-8

    Article  Google Scholar 

  17. Siqueira G, Milagres AMF, Carvalho W et al (2011) Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol Biofuels 4:2–10. https://doi.org/10.1186/1754-6834-4-7

    Article  Google Scholar 

  18. Granado MPP, Suhogusoff YVM, Santos LRO et al (2021) Effects of pressure densification on strength and properties of cassava waste briquettes. Renew Energy 167:306–312. https://doi.org/10.1016/j.renene.2020.11.087

    Article  Google Scholar 

  19. de Figueiredo FC, Carvalho AFA, Brienzo M et al (2017) Chemical input reduction in the arabinoxylan and lignocellulose alkaline extraction and xylooligosaccharides production. BioresourTechnol 228:164–170. https://doi.org/10.1016/j.biortech.2016.12.097

    Article  Google Scholar 

  20. Rocha GJM, Andrade LP, Martín C, et al (2020) Simultaneous obtaining of oxidized lignin and cellulosic pulp from steam-exploded sugarcane bagasse. Ind Crops Prod 147. https://doi.org/10.1016/j.indcrop.2020.112227

  21. Arni SA et al (2018) Extraction and isolation methods for lignin separation from sugarcane bagasse: a review. Ind Crops Prod 115:330–339. https://doi.org/10.1016/j.indcrop.2018.02.012

  22. Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44:488–495. https://doi.org/10.1016/j.indcrop.2012.10.005

    Article  Google Scholar 

  23. Oliveira LH, Barbosa PVG, Lima PAF et al (2017) Aproveitamento de resíduos madeireiros de Pinus sp. com diferentes granulometrias para a produção de briquetes. Rev Cienc Agrarias 40:683–691. https://doi.org/10.19084/rca17010

    Article  Google Scholar 

  24. Kumar D, Murthy GS (2016) Enzymatic hydrolysis of cellulose for ethanol production: fundamentals, optimal enzyme ratio, and hydrolysis modeling. In: New and future developments in microbial biotechnology and bioengineering: microbial cellulase system properties and applications. Elsevier Inc., pp 65–78. https://doi.org/10.1016/B978-0-444-63507-5.00007-1

  25. Santos BV (2019) Caracterização, pré-tratamentos, hidrólises enzimáticas e fermentação alcoólica de sorgo biomassa. Universidade Federal de Uberlândia

  26. Aló LL, Konishi PA, Belini GB et al (2017) Briquettes of sugarcane bagasse and eucalyptus spp sawdust: Characterization and hygroscopic equilibrium. Rev Virt Quim 9:774–785. https://doi.org/10.21577/1984-6835.20170048

    Article  Google Scholar 

  27. de Smith AKG, Alesi LS, Varanda LD et al (2019) Production and evaluation of briquettes from urban pruning residue and sugarcane bagasse. Rev Bras Eng Agricola e Ambient 23:138–143. https://doi.org/10.1590/1807-1929/agriambi.v23n2p138-143

    Article  Google Scholar 

  28. Padilla ERD, Pires ICSA, Yamaji FM, Fandiño JMM (2016) Production and physical-mechanical characterization of briquettes from coconut fiber and sugarcane straw. Rev Virt Quim 8:1334–1346. https://doi.org/10.21577/1984-6835.20160095

    Article  Google Scholar 

  29. de Souza Santos DR, Sette CR, da Silva MF et al (2016) Potencial de espécies de Bambu como fonte energética. Sci For 44:751–758. https://doi.org/10.18671/scifor.v44n111.21

    Article  Google Scholar 

  30. da Silva DA, Yamaji FM, de Barros JL et al (2015) Caracterização de biomassas para a briquetagem. Floresta 45:713–722. https://doi.org/10.5380/rf.v45i4.39700

    Article  Google Scholar 

  31. Kpalo SY, Zainuddin MF, Halim HBA et al (2019) Physical characterization of briquettes produced from paper pulp and Mesua ferrea mixtures. Biofuels. https://doi.org/10.1080/17597269.2019.1695361

    Article  Google Scholar 

  32. Lopes Amaral Costa AC, de Jesus Eufrade Junior H, Spadim ER et al (2020) Caracterização física, química e mecânica de pellets de bagaço de cana-de-açúcar. Energia Na Agricultura 35:38–45

    Article  Google Scholar 

  33. Wallace J, Brienzo M, García-Aparicio MP, Görgens JF (2016) Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse. New Biotechnol 33:361–371. https://doi.org/10.1016/j.nbt.2016.01.004

    Article  Google Scholar 

  34. Ferreira Quirino W, de Oliveira V, Pinha I, de Oliveira C, Moreira A et al (2012) X Ray densitometry for waste wood briquetts analysis. Sci For 40:525–536

    Google Scholar 

  35. Sporck D, Reinoso FAM, Rencoret J, Gutiérrez A, Del Rio JC, Ferraz A, Milagres AMF (2017) Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnol Biofuels 7(10):296. https://doi.org/10.1186/s13068-017-0981-z

  36. Minoru Yamaji F, Vendrasco L, Chrisostomo W, de Paula FW (2013) Analysis of the hygroscopic behavior of briquettes. Energia Agricult 28:11–15

    Google Scholar 

  37. Ponte MR, Gadelha AMT, Machado Y de L, et al (2019) Blends of sugarcane bagasse with the mango tree and cashew tree’s pruning: Properties characterization and investigation of their energy potentials. Rev Materia 24.https://doi.org/10.1590/s1517-707620190002.0687

  38. Andrade LFF, Bigaton RP (2016) Sugarcane bagasse briquetting. Graduate in Agricultural Engineering Conclusion Course - Federal University of Grande Dourados, Dourados - MS. https://repositorio.ufgd.edu.br/jspui/bitstream/prefix/3420/1/LuizFelipeFariasdeAndrade%20-%20RafaelPauloBigaton.pdf

  39. Brizzi P da S (2017) Extração da lignina do bagaço de cana-de-açúcar e seu emprego na melhoria da resistência a compressão do cimento odontológico Dissertation, Federal Technological University of Parana

  40. Fernandez BO, Gonçalves BF, Pereira ACC et al (2017) Mechanical and energetic characteristics of briquettes produced from different types of biomass. Rev Virt Quim 9:29–38

    Article  Google Scholar 

  41. Sette CR, Hansted ALS, Novaes E et al (2018) Energy enhancement of the eucalyptus bark by briquette production. Ind Crops Prod 122:209–213. https://doi.org/10.1016/j.indcrop.2018.05.057

    Article  Google Scholar 

  42. Bajwa DS, Peterson T, Sharma N et al (2018) A review of densified solid biomass for energy production. Renew Sustain Energy Rev 96:296–305

    Article  Google Scholar 

  43. Santana ER (2019) Caracterização e briquetagem de resíduos florestais. Dissertation, Federal University of Grande Dourados

Download references

Funding

The authors would like to thank the São Paulo Research Foundation (FAPESP) for research support (grant number 2019/12997–6, 2018/14827–8), and Brazilian Council for Research and Development (CNPq, process number: 303239/2021–2).

Author information

Authors and Affiliations

Authors

Contributions

Michel Brienzo contributed to conceptualization; Manuel Ndumbo and Caroline de Freitas contributed to formal analysis; Michel Brienzo and Andrea Cressoni de Conti provided the resources; Manuel Ndumbo and Caroline de Freitas contributed to writing original draft; Michel Brienzo and Andrea Cressoni de Conti contributed to manuscript revision.

Corresponding author

Correspondence to Michel Brienzo.

Ethics declarations

Ethical approval

Not applicable.

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndumbo, M., de Freitas, C., de Conti, A.C. et al. Biomass biorefinery for biopolymers isolation, fermentable sugars, and briquettes production. Biomass Conv. Bioref. 14, 11339–11349 (2024). https://doi.org/10.1007/s13399-022-03250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03250-1

Keywords

Navigation