Skip to main content

Advertisement

Log in

Conversion of boreal lake sedimented pulp mill fibre into biogas: a two-stage hydrogen and methane production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The possibility of producing hydrogen and methane from sedimented pulp and paper mill waste fibre was explored for the first time in a double-stage process. Hydrogen and methane production was compared in batch experiments under four different conditions: two-stage hydrogen and methane production under (i) mesophilic (37 °C) and (ii) thermophilic (55 °C) and one-stage methane production under (iii) mesophilic and (iv) thermophilic conditions. Among these conditions studied, two-stage thermophilic anaerobic digestion achieved the highest hydrogen yield (42.1 ± 2.91 mL/g VS) and methane yield (334 ± 26.8 mL/g VS) at 55 °C. The experimental results were fitted to modified Gompertz equation, and a strong correlation was built from the overall magnitude of the regression (R2 ranged from 0.996to 0.989) between the experimental data and the applied equation. Total energy yield from the two-stage thermophilic process was higher (3.7 kWh/L) than the one-stage process (1.7 kWh/L). The two-stage treatment also reduced the treatment time by half. Knowledge gained from this study will provide a basis for future investigation of two-stage treatment of sedimented fibres.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available in the manuscript.

References

  1. Oel PR Van, Hoekstra AY (2012) Towards quantification of the water footprint of paper : a first estimate of its consumptive component. 733–749. https://doi.org/10.1007/s11269-011-9942-7

  2. Hoffman E, Lyons J, Boxall J et al (2017) Spatiotemporal assessment (quarter century) of pulp mill metal(loid) contaminated sediment to inform remediation decisions. Environ Monit Assess 189:257. https://doi.org/10.1007/s10661-017-5952-0

    Article  CAS  PubMed  Google Scholar 

  3. Kokko M, Koskue V, Rintala J (2018) Anaerobic digestion of 30–100-year-old boreal lake sedimented fibre from the pulp industry: extrapolating methane production potential to a practical scale. Water Res 133:218–226. https://doi.org/10.1016/j.watres.2018.01.041

    Article  CAS  PubMed  Google Scholar 

  4. Chatterjee P, Lahtinen L, Kokko M, Rintala J (2018) Remediation of sedimented fiber originating from pulp and paper industry: laboratory scale anaerobic reactor studies and ideas of scaling up. Water Res 143:209–217. https://doi.org/10.1016/j.watres.2018.06.054

    Article  CAS  PubMed  Google Scholar 

  5. Kaparaju P, Serrano M, Thomsen AB et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568. https://doi.org/10.1016/j.biortech.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  6. Silva FMS, Mahler CF, Oliveira LB, Bassin JP (2018) Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Manag 76:339–349. https://doi.org/10.1016/j.wasman.2018.02.039

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Zhao YC (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energy 34:245–254. https://doi.org/10.1016/j.ijhydene.2008.09.100

    Article  CAS  Google Scholar 

  8. Liu X, Li R, Ji M, Han L (2013) Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield. Bioresour Technol 146:317–323. https://doi.org/10.1016/j.biortech.2013.07.096

    Article  CAS  PubMed  Google Scholar 

  9. Fu SF, Xu XH, Dai M et al (2017) Hydrogen and methane production from vinasse using two-stage anaerobic digestion. Process Saf Environ Prot 107:81–86. https://doi.org/10.1016/j.psep.2017.01.024

    Article  CAS  Google Scholar 

  10. Abreu et al (2019) (2019) Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresour Technol 278:180–186. https://doi.org/10.1016/j.biortech.2019.01.085

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud M, Elreedy A, Pascal P et al (2017) Hythane (H2and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor. Energy Convers Manag 152:342–353. https://doi.org/10.1016/j.enconman.2017.09.060

    Article  CAS  Google Scholar 

  12. Palmeri N, Chiodo V, Freni S et al (2008) Hydrogen from oxygenated solvents by steam reforming on Ni/Al2O3 catalyst. Int J Hydrogen Energy 33:6627–6634. https://doi.org/10.1016/j.ijhydene.2008.07.064

    Article  CAS  Google Scholar 

  13. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015

    Article  CAS  Google Scholar 

  14. Luo G, Xie L, Zou Z et al (2010) Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR). Int J Hydrogen Energy 35:11733–11737. https://doi.org/10.1016/j.ijhydene.2010.08.033

    Article  CAS  Google Scholar 

  15. Cheng J, Xie B, Zhou J et al (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrogen Energy 35:3029–3035. https://doi.org/10.1016/j.ijhydene.2009.07.012

    Article  CAS  Google Scholar 

  16. Karadag D, Puhakka JA (2010) Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. Int J Hydrogen Energy 35:10954–10959. https://doi.org/10.1016/j.ijhydene.2010.07.070

    Article  CAS  Google Scholar 

  17. Verhaart MRA, Bielen AAM, Van Der Oost J et al (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003. https://doi.org/10.1080/09593331003710244

    Article  CAS  PubMed  Google Scholar 

  18. Luo G, Karakashev D, Xie L et al (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827. https://doi.org/10.1002/bit.23122

    Article  CAS  PubMed  Google Scholar 

  19. Lee DY, Ebie Y, Xu KQ et al (2010) Continuous H2and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47. https://doi.org/10.1016/j.biortech.2009.03.037

    Article  CAS  PubMed  Google Scholar 

  20. Dessì P, Lakaniemi AM, Lens PNL et al (2018) Thermophilic versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: biohydrogen production and active microbial community. Int J Hydrogen Energy 43:5473–5485. https://doi.org/10.1016/j.ijhydene.2018.01.158

    Article  CAS  Google Scholar 

  21. Ma H, Su H (2019) Effect of temperature on the fermentation of starch by two high efficient H 2 producers. Renew Energy 138:964–970. https://doi.org/10.1016/j.renene.2019.01.126

    Article  CAS  Google Scholar 

  22. El-Qelish M, Chatterjee P, Dessì P et al (2020) Bio-hydrogen production from sewage sludge: screening for pretreatments and semi-continuous reactor operation. Waste Biomass Valoriz 11:4225–4234. https://doi.org/10.1007/s12649-019-00743-5

    Article  CAS  Google Scholar 

  23. Owen WF, Stuckey DC, Healy JB et al (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492. https://doi.org/10.1016/0043-1354(79)90043-5

    Article  CAS  Google Scholar 

  24. Nissilä ME, Tähti HP, Rintala JA, Puhakka JA (2011) Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresour Technol 102:4501–4506. https://doi.org/10.1016/j.biortech.2010.12.072

    Article  CAS  PubMed  Google Scholar 

  25. Logan BE, Oh S-E, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535

    Article  CAS  PubMed  Google Scholar 

  26. Angelidaki I, Alves M, Bolzonella D et al (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. https://doi.org/10.2166/wst.2009.040

    Article  CAS  PubMed  Google Scholar 

  27. Mu Y, Yu HQ, Wang G (2007) A kinetic approach to anaerobic hydrogen-producing process. Water Res 41:1152–1160. https://doi.org/10.1016/j.watres.2006.11.047

    Article  CAS  PubMed  Google Scholar 

  28. Yahya M, Herrmann C, Ismaili S et al (2022) Kinetic studies for hydrogen and methane co-production from food wastes using multiple models. Biomass Bioenergy 161:106449. https://doi.org/10.1016/j.biombioe.2022.106449

    Article  CAS  Google Scholar 

  29. APHA/AWWA/WEF (2012) Standard methods for the examination of water and wastewater. Stand Methods 541. ISBN 9780875532356

  30. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design, data analysis, and model building, 1st edn. Wiley, p 653. https://doi.org/10.1177/014662168000400313

  31. Cai M, Liu J, Wei Y (2004) Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol 38:3195–3202. https://doi.org/10.1021/es0349204

    Article  CAS  PubMed  Google Scholar 

  32. Nizami AS, Murphy JD (2011) Optimizing the operation of a two-phase anaerobic digestion system digesting grass silage. Environ Sci Technol 45:7561–7569. https://doi.org/10.1021/es201357r

    Article  CAS  PubMed  Google Scholar 

  33. Lin Y, Wu S, Wang D (2012) Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic–thermophilic anaerobic co-digestion. Int J Hydrogen Energy 38:15055–15062. https://doi.org/10.1016/j.ijhydene.2012.01.051

    Article  CAS  Google Scholar 

  34. Dessì P, Lakaniemi A, Lens PNL (2017) Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 C. Water Res 115:120–129. https://doi.org/10.1016/j.watres.2017.02.063

    Article  CAS  PubMed  Google Scholar 

  35. Pradhan N, Dipasquale L, D’Ippolito G et al (2015) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Int J Mol Sci 16:12578–12600. https://doi.org/10.3390/ijms160612578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ratkowsky DA, Olley J, Mcmeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hasyim R, Imai T, Reungsang A, O-thong S (2010) Extreme-thermophilic biohydrogen production by an anaerobic heat treated digested sewage sludge culture. Int J Hydrogen Energy 36:8727–8734. https://doi.org/10.1016/j.ijhydene.2010.06.079

    Article  CAS  Google Scholar 

  38. Wan J, Jing Y, Zhang S et al (2016) Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis. Water Res 102:524–532. https://doi.org/10.1016/j.watres.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  39. Tawfik A, Nasr M, Galal A et al (2021) Fermentation-based nanoparticle systems for sustainable conversion of black-liquor into biohydrogen. J Clean Prod 309:127349. https://doi.org/10.1016/j.jclepro.2021.127349

    Article  CAS  Google Scholar 

  40. Yang G, Wang J (2019) Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresour Technol 275:10–18. https://doi.org/10.1016/j.biortech.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  41. Nasr M, Tawfik A, Awad HM et al (2021) Dual production of hydrogen and biochar from industrial effluent containing phenolic compounds. Fuel 301:121087. https://doi.org/10.1016/j.fuel.2021.121087

    Article  CAS  Google Scholar 

  42. Wang W, Xie L, Chen J et al (2011) Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. Bioresour Technol 102:3833–3839. https://doi.org/10.1016/j.biortech.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  43. Ince O (1998) Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res 32:2707–2713. https://doi.org/10.1016/S0043-1354(98)00036-0

    Article  CAS  Google Scholar 

  44. Ye J, Hu A, Ren G et al (2018) Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud. Water Res 134:54–62. https://doi.org/10.1016/j.watres.2018.01.062

    Article  CAS  PubMed  Google Scholar 

  45. Schievano A, Tenca A, Scaglia B et al (2012) Two-stage vs single-stage thermophilic anaerobic digestion : comparison of energy production and biodegradation efficiencies. Environ Sci Technol 46:8502–8510. https://doi.org/10.1021/es301376n

    Article  CAS  PubMed  Google Scholar 

  46. Koutrouli EC, Kalfas H, Gavala HN et al (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 100:3718–3723. https://doi.org/10.1016/j.biortech.2009.01.037

    Article  CAS  PubMed  Google Scholar 

  47. Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41:1413–1419. https://doi.org/10.1021/es062127f

    Article  CAS  PubMed  Google Scholar 

  48. Schievano A, D’Imporzano G, Malagutti L et al (2010) Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol 101:5728–5732. https://doi.org/10.1016/j.biortech.2010.02.032

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  50. Lay JJ, Li YY, Noike T (1998) Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor. Water Res 32:3673–3679. https://doi.org/10.1016/S0043-1354(98)00137-7

    Article  CAS  Google Scholar 

  51. Ware A, Power N (2017) Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew Energy 104:50–59. https://doi.org/10.1016/j.renene.2016.11.045

    Article  CAS  Google Scholar 

  52. Zhu H, Yang J, Xiaowei C (2019) Application of modified Gompertz model to study on biogas production from middle temperature co-digestion of pig manure and dead pigs. E3S Web Conf 118. https://doi.org/10.1051/e3sconf/201911803022

  53. Li P, Li W, Sun M et al (2019) Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies 12. https://doi.org/10.3390/en12010026

  54. Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236. https://doi.org/10.1016/j.watres.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  55. Pisutpaisal N, Nathao C, Sirisukpoka U (2014) Biological hydrogen and methane production in from food waste in two-stage CSTR. Energy Procedia 50:719–722. https://doi.org/10.1016/j.egypro.2014.06.088

    Article  CAS  Google Scholar 

  56. Sitthikitpanya S, Reungsang A, Prasertsan P (2018) Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. Int J Hydrogen Energy 43:4284–4293. https://doi.org/10.1016/j.ijhydene.2018.01.063

    Article  CAS  Google Scholar 

  57. An Q, Bu J, Cheng JR et al (2020) Biological saccharification by Clostridium thermocellum and two-stage hydrogen and methane production from hydrogen peroxide-acetic acid pretreated sugarcane bagasse. Int J Hydrogen Energy 45:30211–30221. https://doi.org/10.1016/j.ijhydene.2020.08.069

    Article  CAS  Google Scholar 

  58. Michalopoulos I, Lytras GM, Mathioudakis D et al (2020) Hydrogen and methane production from Food Residue Biomass Product (FORBI). Waste Biomass Valoriz 11:1647–1655. https://doi.org/10.1007/s12649-018-00550-4

    Article  CAS  Google Scholar 

  59. Kongjan P, O-Thong S, Angelidaki I, (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035. https://doi.org/10.1016/j.biortech.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  60. Bayr S, Kaparaju P, Rintala J (2013) Screening pretreatment methods to enhance thermophilic anaerobic digestion of pulp and paper mill wastewater treatment secondary sludge. Chem Eng J 223:479–486. https://doi.org/10.1016/j.cej.2013.02.119

    Article  CAS  Google Scholar 

  61. Karlsson A, Bin TX, Gustavsson J et al (2011) Anaerobic treatment of activated sludge from Swedish pulp and paper mills - biogas production potential and limitations. Environ Technol 32:1559–1571. https://doi.org/10.1080/09593330.2010.543932

    Article  CAS  PubMed  Google Scholar 

  62. Kargi F, Eren NS, Ozmihci S (2012) Bio-hydrogen production from cheese whey powder ( CWP ) solution : comparison of thermophilic and mesophilic dark fermentations. Int J Hydrogen Energy 37:8338–8342. https://doi.org/10.1016/j.ijhydene.2012.02.162

    Article  CAS  Google Scholar 

  63. Mamimin C, Singkhala A, Kongjan P et al (2015) Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int J Hydrogen Energy 40:6319–6328. https://doi.org/10.1016/j.ijhydene.2015.03.068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author appreciates the operators of Viinikanlahti municipal wastewater treatment plant (Tampere, Finland) for collecting the sludge samples and Ramboll Finland Oy for providing the sedimented fibre samples.

Funding

This work was supported by the fund received from the Finnish National Agency for Education (visiting doctoral program).

Author information

Authors and Affiliations

Authors

Contributions

Mohamed El-Qelish: methodology, investigation, formal analysis, visualization, writing — original draft. Pritha Chatterjee: methodology, investigation, visualization, writing — original draft, writing — review and editing, supervision. Marika Kokko: investigation, visualization, writing — original draft, writing — review and editing, supervision. Fatma El-Gohary: writing — review and editing, Supervision. Mohamed Abo-Aly: writing — and editing, supervision. Jukka Rintala: visualization, writing — original draft, writing — review and editing, supervision, funding acquisition, project administration.

Corresponding author

Correspondence to Mohamed El-Qelish.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Sedimented boreal fibres were anaerobically treated in one- and two-stage treatment.

2. Hydrogen yield of sedimented fibres at 55 °C was four times the yield at 37 °C.

3. Two-stage treatment at 55 °C achieved the highest methane yield of 334 mL-CH4/g VS.

4. Maximum energy yield of 3.7 kWh/L was obtained at 55 °C.

5. Net energy yield of the two-stage treatment was the most efficient at 55 °C.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Qelish, M., Chatterjee, P., Kokko, M. et al. Conversion of boreal lake sedimented pulp mill fibre into biogas: a two-stage hydrogen and methane production. Biomass Conv. Bioref. 14, 8819–8828 (2024). https://doi.org/10.1007/s13399-022-03219-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03219-0

Keywords

Navigation