Skip to main content

Advertisement

Log in

Insight into the production of aviation fuel by aldol condensation of biomass-derived aldehydes and ketones followed by hydrogenation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The catalytic conversion of renewable biomass-derived aldehydes and ketones to aviation fuels is very attractive for sustainable development. We provided insight into the production of aviation fuel from typical biomass carbonyl platform compounds (furfural, acetone, butanone, and butyraldehyde) by aldol condensation followed with hydrodeoxygenation over bifunctional catalyst Ni/Mg–Al-O/AC, focusing on the mechanism of condensation reaction. It was found that high temperature is not only conducive to aggravate the depth of aldehyde ketone condensation reaction, further convert dimer to trimer, but also promote its self-condensation. The optimal condensation temperature of aldehydes and ketones under this idea was 170 °C, the carbon number range of the jet fuel intermediates was C7–C14, and the yield of condensates reached 79.23%. In order to explore the mechanism in the aldol condensation of aldehydes and ketones, the evolution law of typical products was studied by controlling the reaction time, and seven main condensation pathways were proposed. The ratios of aldehyde/ketone in the reactant and the ratios of each component within the aldehyde and ketone were adjusted, and it was found that the reaction priority of chain aldehydes is the highest in this reaction system, and the reaction priority of small-molecule ketones with low carbon number is higher than that of high carbon number ketones. The presence of long-chain groups in the hydrogenated oil increased the density of jet fuel, and it has a higher calorific value, which are very promising as aviation fuels or additives of aviation bio-fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Liu G, Yan B, Chen G (2013) Technical review on jet fuel production. Renew Sustain Energy Rev 25:59–70. https://doi.org/10.1016/j.rser.2013.03.025

    Article  CAS  Google Scholar 

  2. Karmakar B, Samanta S, Halder G (2020) Delonix two-step biodiesel production from Pongamia pinnata oil using methanol and 2-propanol. J Clean Prod 255:120313. https://doi.org/10.1016/j.jclepro.2020.120313

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  4. Chowdari RK, Agarwal S, Heeres HJ (2019) Hydrotreatment of kraft lignin to alkylphenolics and aromatics using Ni, Mo, and W phosphides supported on activated carbon. ACS Sustain Chem Eng 7(2):2044–2055. https://doi.org/10.1021/acssuschemeng.8b04411

    Article  CAS  PubMed  Google Scholar 

  5. Faba L, Díaz E, Ordóñez S (2012) Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl Catal B: Environ 113–114. https://doi.org/10.1016/j.apcatb.2011.11.039

  6. Sheng X, Li N, Li G, Wang W, Yang J, Cong Y, Zhang T (2015) Synthesis of high-density aviation fuel with cyclopentanol derived from lignocellulose. Sci Rep 5:9565. https://doi.org/10.1038/srep09565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sacia ER, Deaner MH, Louie YL, Bell AT (2015) Synthesis of biomass-derived methylcyclopentane as a gasoline additive via aldol condensation/hydrodeoxygenation of 2,5-hexanedione. Green Chem 17(4):2393–2397. https://doi.org/10.1039/c4gc02292k

    Article  CAS  Google Scholar 

  8. Dedsuksophon W, Faungnawakij K, Champreda V, Laosiripojana N (2011) Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3–ZrO2 in a single reactor. Biores Technol 102(2):2040–2046. https://doi.org/10.1016/j.biortech.2010.09.073

    Article  CAS  Google Scholar 

  9. Kong X, Wei XJ, Li LP, Fang Z, Lei H (2021) Production of liquid fuel intermediates from furfural via aldol condensation over La2O2CO3-ZnO-Al2O3 catalyst. Catal Commun 149:106207. https://doi.org/10.1016/j.catcom.2020.106207

    Article  CAS  Google Scholar 

  10. Xing R, Subrahmanyam AV, Olcay H, Qi W, van Walsum GP, Pendse H, Huber GW (2010) Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chem 12(11):1933–1946. https://doi.org/10.1039/C0GC00263A

    Article  CAS  Google Scholar 

  11. Liu Y, Li G, Hu Y, Wang A, Lu F, Zou JJ, Zhang T (2019) Integrated conversion of cellulose to high-density aviation fuel. Joule 3(4):1028–1036. https://doi.org/10.1016/j.joule.2019.02.005

    Article  CAS  Google Scholar 

  12. Xu X, Meng H, Lu Y, Li C (2018) Aldol condensation of refluxing acetone on CaC2 achieves efficient coproduction of diacetone alcohol, mesityl oxide and isophorone. RSC Adv 8(53):30610–30615. https://doi.org/10.1039/C8RA05965A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang N, Zhang X, An H, Zhao X, Wang Y (2015) Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation–hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst. Green Chem 17(5):2959–2972. https://doi.org/10.1039/C5GC00223K

    Article  CAS  Google Scholar 

  14. Ao L, Zhao W, Guan YS, Wang DK, Liu KS, Guo TT, Wei XY (2019) Efficient synthesis of C15 fuel precursor by heterogeneously catalyzed aldol-condensation of furfural with cyclopentanone. RSC Advances 9(7):3661–3668. https://doi.org/10.1039/C8RA09517E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Makkee M (2018) The influence of CO2 on NO reduction into N2 over reduced ceria-based catalyst. Appl Catal B 221:196–205. https://doi.org/10.1016/j.apcatb.2017.09.013

    Article  CAS  Google Scholar 

  16. Xu J, Jiang J, Hse C, Shupe TF (2012) Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem 14(10):2821–2830. https://doi.org/10.1039/c2gc35805k

    Article  CAS  Google Scholar 

  17. Vila A, Graña AM, Mosquera RA (2002) Electron density characterisation of intermolecular interactions in the formaldehyde dimer and trimer. Chem Phys 281(1):11–22. https://doi.org/10.1016/S0301-0104(02)00590-6

    Article  CAS  Google Scholar 

  18. Huang XM, Zhang Q, Wang TJ, Liu QY, Ma Ll, Zhang Q (2002) Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY. J Fuel Chem Technol 40(8):973–978. https://doi.org/10.1016/S1872-5813(12)60035-8

    Article  Google Scholar 

  19. Vashishtha M, Mishra M, Shah DO (2003) A novel approach for selective cross aldol condensation using reusable NaOH-cationic micellar systems. Appl Catal A 466:38–44. https://doi.org/10.1016/j.apcata.2013.06.015

    Article  CAS  Google Scholar 

  20. Bredihhin A, Salmar S, Vares L (2018) Route for conversion of furfural to ethylcyclopentane. ACS Omega 3(8):10211–10215. https://doi.org/10.1021/acsomega.8b00588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim M, Park J, Kannapu H, Suh YW (2017) Cross-aldol condensation of acetone and n-butanol into aliphatic ketones over supported Cu catalysts on ceria-zirconia. Catalysts 7:249. https://doi.org/10.3390/catal7090249

    Article  CAS  Google Scholar 

  22. Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2016) Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B 66(1–2):111–118. https://doi.org/10.1016/j.apcatb.2006.03.001

    Article  CAS  Google Scholar 

  23. West RM, Liu ZY, Peter M, Dumesic JA (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. Chemsuschem 1(5):417–424. https://doi.org/10.1002/cssc.200800001

    Article  CAS  PubMed  Google Scholar 

  24. Tsuji H, Yagi F, Hattori H, Kita H (1994) Self-condensation of n-butyraldehyde over solid base catalysts. J Catal 148(2):759–770. https://doi.org/10.1006/jcat.1994.1262

    Article  CAS  Google Scholar 

  25. Salvapati GS, Ramanamurty KV (1989) Selective catalytic self-condensation of acetone. Janardanarao M J Mol Catal 54(1):9–30. https://doi.org/10.1016/0304-5102(89)80134-8

    Article  CAS  Google Scholar 

  26. Nikolopoulos AA, Jang BWL, Spivey JJ (2005) Acetone condensation and selective hydrogenation to MIBK on Pd and Pt hydrotalcite-derived MgAl mixed oxide catalysts. Appl Catal A 296(1):128–136. https://doi.org/10.1016/j.apcata.2005.08.022

    Article  CAS  Google Scholar 

  27. Zhao Y, Xu H, Lu K, Qu Y, Zhu L, Wang S (2019) Dehydration of xylose to furfural in butanone catalyzed by Brønsted-Lewis acidic ionic liquids. Energy Sci Eng 7(5):2237–2246. https://doi.org/10.1002/ese3.444

    Article  CAS  Google Scholar 

  28. Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chemistry 1(1):32–58. https://doi.org/10.1016/j.chempr.2016.05.002

    Article  CAS  Google Scholar 

  29. Belokon YN, Bulychev AG, Vitt SV, Struchkov YT, Batsanov AS, Timofeeva TV, Lysova LA (1985) General method of diastereo- and enantioselective synthesis of β-hydroxy-α-amino acids by condensation of aldehydes and ketones with glycine. J Am Chem Soc 107(14):4252–4259. https://doi.org/10.1021/ja00300a030

    Article  CAS  Google Scholar 

  30. Shao S, Dong W, Li X, Zhang H, Xiao R, Cai Y (2019) Solvent-free synthesis of jet fuel by aldol condensation and hydroprocessing of cyclopentanone as biomass-derivates. J Clean Prod 250:119459. https://doi.org/10.1016/j.jclepro.2019.119459

    Article  CAS  Google Scholar 

  31. Li Y, Liu X, An H, Zhao X, Wang Y (2016) One-pot sequential aldol condensation and hydrogenation of n-butyraldehyde to 2-ethylhexanol. Ind Eng Chem Res 55(22):6293–6299. https://doi.org/10.1021/acs.iecr.6b00828

    Article  CAS  Google Scholar 

  32. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48(22):3987–3990. https://doi.org/10.1002/ese3.444

    Article  CAS  Google Scholar 

  33. Norskov J, Niemantsverdriet H (2015) Special issue: the impact of heliotrope on catalysis. J Catal 328:1–1. https://doi.org/10.1016/j.jcat.2015.04.027

    Article  CAS  Google Scholar 

  34. Xie J, Zhang L, Zhang X, Han P, Xie J, Pan L, Zou JJ\ (2018) Synthesis of high-density and low-freezing-point jet fuel using lignocellulose-derived isophorone and furanic aldehydes. Sustain Energy Fuels 2 https://doi.org/10.1039/C8SE00197A

Download references

Funding

This study was currently supported by Natural Science Foundation of Jiangsu Province (BK20201420) and China Postdoctoral Science Foundation (2018M630495, 2019T120375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Shao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shao, S., Hu, X. et al. Insight into the production of aviation fuel by aldol condensation of biomass-derived aldehydes and ketones followed by hydrogenation. Biomass Conv. Bioref. 14, 7915–7926 (2024). https://doi.org/10.1007/s13399-022-03083-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03083-y

Keywords

Navigation